最近中文字幕2018免费版2019,久久国产劲暴∨内射新川,久久久午夜精品福利内容,日韩视频 中文字幕 视频一区

首頁 > 文章中心 > 集成電路設計方法

集成電路設計方法

前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇集成電路設計方法范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。

集成電路設計方法

集成電路設計方法范文第1篇

【關鍵詞】數字集成電路;設計方法;同步數字系統

【中圖分類號】TN402【文獻標識碼】A【文章編號】1006-4222(2016)04-0197-02

數字電路設計是一個正在不斷發展著的學科,針對其設計方法一般包括了兩種:①同步設計;②異步設計。從目前市場上的產品來看,大多數的數字電路都是采用同步設計的設計方法,究其原因,同步設計主要元器件是觸發器,該技術較為成熟。但是隨著人們需求的不斷變化,異步設計也已經開始慢慢走近人們的視野之中。本文將首先對數字電路的設計流程進行簡單的論述。

1數字電路流程設計

伴隨著熟悉電路的發展,慢慢的,它已經有了較為完整的體系,主要包括了系統架構、RTL設計、綜合優化、布局布線、版圖設計等幾個方面。下面依次對這幾個方面進行介紹。系統架構是整個設計最基礎的環節,同時也是十分重要的環節,因為只要有了一個好的系統構架那么設計起來就會十分的方便。在這個環節中需要對模塊進行劃分,同時也需要對接口進行定義等。下一個環節便是RTL設計。這一環節是核心環節因為在這一階段需要用相應的語言來將電路描述出來。綜合優化就是將RTL轉化為相應的硬件電路。這個環節中往往是和工藝廠商進行合作,從而搭建出合適的電路。數字電路的布局布線與模擬電路相比要簡單許多,因為很對芯片制造后,生產者就會給出基準單元庫。然后利用EDA軟件,根據這些相應的限制自動布局布線。最后一個環節也就是版圖設計環節。就是在布局布線設計完成之后,結合基準單元生成具體版圖,然后通過驗證后,教給工廠代加工制造芯片。

2同步數字系統設計

在文章開始,筆者就提到同步設計法受到眾多設計人員的青睞。下面本文就將嚴格按照上文中提到過的幾種設計階段對同步設計法進行詳細的介紹:

2.1同步電路的優越性

之所以被稱之為同步系統就是因為觸發器的狀態是有統一始終控制的。各個存儲狀態的改變都是在時鐘的控制之下完成的。所以同步系統具有著多種好處。①同步電路保證各個存儲單元都有著相同的初始態,并且只有在時鐘沿到來之時,存儲單元的狀態才會發生轉變,這樣很大程度上就使得電路較為穩定,能夠避免溫度等對電路的影響。②能夠很容易實現流水線,對于提高芯片的效率等方面具有較大的好處。

2.2觸發器

觸發器是同步電路的基本單元,尤其指的是D觸發器。對于觸發器而言,最重要的特點就是只有當時鐘沿到來的時候,觸發器才會將存儲狀態轉變,也就是將數據端的數據保存起來。當時鐘沿不到達時,觸發器不會采取動作,這樣就是同步電路較為穩定的原因之一。觸發器在組成時,可以采用MOS管進行搭建,也可以采用簡單的邏輯器件進行構建。

2.3RTL級描述

由于數字電路需要具備的功能越來越多同時規模也變的越來越大,那么系統這一理念也變得越來越強大。使用Ver-ilogHDL可以對系統進行行為級以及RTL級描述。行為級描述就是為了確認系統是否可行、可靠,同時也會檢查算法是否正確。在進行RTL級設計的時候需要注意到描述的可綜合性以及測試驗證功能的完備性。描述的可綜合性詳細來說就是設計人員大多使用mod-elsim進行編譯仿真。這款軟件雖然簡單實用,但同時也具備著不容忽視的弱點,就是VerilogHDL的容錯性較強,不能區分出行為級描述以及RTL級描述。這就意味著設計人員的設計最終可能無法被綜合成硬件電路。為了解決這一問題。設計人員就需要多多關注指令都能夠被綜合成什么樣的電路,同時關注哪些指令不可被綜合。RTL級描述中,功能需要是完備的。這就比可綜合性困難的多。因為到目前為止并沒有能保證功能完備性的驗證體系。為了避免這個問題的出現。設計人員需要從以下的方面入手:①對于系統級規劃中模塊盡量按照其功能進行劃分,這樣就能夠在進行RTL級描述時嚴格按照規劃設計。②保持良好的編程習慣。③成立專人的測試部門,這樣既有測試人員又有著設計人員。在測試人員的把關之下,很多的問題以及漏洞就會被發現。

2.4利用DesignCompiler綜合優化

DC綜合這一過程是數字電子線路設計的前端。在這個綜合設計的過程中那個,DC需要進最大的努力進行優化,但是這之后可能依然有一些違例路徑的存在。這時候就需要人工返回RTL級,進行修改然后再綜合,不斷的循環。

2.5利用SOCEncounter布局布線

同步數字設計的后端就涵蓋了布局布線、時序驗證、后仿等多個環節。對比模擬電路,數字電路布局布線較為簡單尤其再利用一些軟件之后能夠大大的減輕人們的壓力、提高工作效率,節省時間。

3小結

本文對于數字電路設計方法之中的同步設計法進行了詳細的介紹,同時對于在設計過程中可能出現的問題以及解決方案都進行了論述,希望對于今后設計人員對數字電路的設計有所幫助。

參考文獻

[1]孔德立.數字集成電路設計方法的研究[D].西安電子科技大學,2012.

[2]陳明亮.數字集成電路自動測試硬件技術研究[D].電子科技大學,2010.

集成電路設計方法范文第2篇

【關鍵詞】市政道路;節點交通;交叉口;豎向;控制燈

城市的現代化經濟建設在主要是借助于交通的力量,交通發展和完善就是為了促使車輛增多的城市能夠減少車輛擁堵、分散人流的作用。而且城市的經濟實力也是靠交通運輸業帶動起來的,如果城市道路的路網建設能夠全面的把市政道路節點交通設計科學分配并加以完善,城市才能夠盡快的實現現代化的建設。

1、 交叉口的交通組織渠化設計

1.1. 交通組織渠化與信號控制的結合

交叉通組織渠化是拓展路網空間資源的主要途徑。這樣的路網設計確立了一個大框架以便進行交叉口管理和控制。在此組織渠化的“框架”內可進行交叉口信號控制,以優化交叉口時間資源分配,提高道路通行能力。交通節點處人流與車流的控制效果直接取決于交通渠化與信號控制之間的配合程度。但是按照一般的設計理念,道路節點處組織渠化設計往往先于信號控制設計,因此進行組織渠化設計時應考慮周全,為后續信號控制設計預留足夠的時間和空間。如針對左轉車輛較多的道路節點,可適當增加左轉專用相位設計,這就需要在前期渠化設計階段提前開設專用左轉車道;如果要控制右轉車輛的相位,就應該預先了解右轉車輛的相位是否和直行車輛一致,在不一致的情況下可獨辟專用右轉車道。

1.2 左轉(調頭)車道設置位置分析

在左轉(調頭)車流量達到一定程度時,應設置專用左轉(調頭)車道,其一般設置于靠近道路中心線的位置,即進口道最左邊。左轉(調頭)車道設置在進口道靠近道路中心線的位置能夠避免與同向直行車流的沖突,且符合駕駛員的一般行駛習慣。但在實際交叉口組織渠化設計中,也可以有條件的將左轉(調頭)車道設置于同向直行車道的右側。

這種設置方法可以增大左轉(調頭)車輛的轉彎半徑,從而增加其通行能力,特別是在一 些路幅資源有限的交叉口,若將左轉(調頭)車道設置在靠近道路中心線的位置,將導致部分車輛調頭困難,甚至無法有效調頭,這時,就必須調整左轉(調頭)車道的設置位置。需要注意的是,一旦將左轉(調頭)車道設置于同向直行車道的右側,將有可能導致直行車輛與左轉(調頭)車輛的沖突,也限制了交叉口的相位設計(不能采取同向直行、左轉、調頭同時放行的相位設計方法),因此,左轉(調頭)車道的具體設置位置,要根據實際交叉口情況和交通流特性,并結合交叉口信號配時情況綜合考慮。

2、 交叉口的平面設計

2.1 路口視距三角形設計

停車視距、引道視距和交叉路口安全停車視距是適用于道路平面交叉的重要視距指標。停車視距是駕駛員在接近車道障礙物之前作出反應并制動停車所需的最小距離,由駕駛員反應距離及制動距離兩部分構成。引道視距是通向平交路口引道上的停車視距,與停車視距數值相等。交叉路口安全停車視距是使主線上駕駛員發現支路車輛駛入平交路口將與自己發生碰撞時,作出反應距離并制動停車所需的最小距離,由主線車輛3 秒內行駛的距離和停車視距兩部分構成,如表1 所示。

平面交叉口處兩個行車方向的車輛停車視距能夠形成視距三角形,這一范圍內應盡量確保通視,路面以上0.9m~3m 的范圍內禁止布設植物、建筑等設施,以免駕駛員行車視線被擋。

2.2 交叉口轉角緣石的半徑

為了保證右轉彎車輛能以一定的速度順利地轉彎,交叉口轉彎處的緣石應做成圓曲線或多圓心復曲線,以符合相應車輛行駛的軌跡。通常采用圓曲線,計算施工均較方便。

交叉路口轉角處緣石曲線的線型與曲率半徑大小應滿足右轉機動車或非機動車的行駛要求,宜采用單圓曲線、雙圓曲線或三圓曲線,必要時也可采用插入緩和曲線的圓曲線等線型。采用多圓復曲線時,入口處的曲線半徑應小于出口處的曲線半徑。相鄰曲線半徑相差不宜過大,也不宜過小。三圓心復曲線的曲線半徑之比可為R1:R2:R3=1.5:2.5:4.0。

3、交叉口的豎向設計

3.1、縱坡、橫坡要求

平面交叉口范圍內的道路縱坡不宜大于2.5%,也不宜小于0.5% ,橫坡應為0.5%~.2.0%,以利于交通安全和地面雨水排放。

道路類型和等級相當的城市道路相交的平面交叉口在進行豎向設計時宜保持它們的縱坡不變而適當調整各自的橫坡度,達到平緩過渡,平順交接的目的。主要道路與次要道路相交的平面交叉口在進行豎向設計時則宜盡量保持主要道路的縱橫坡度,而適當調整次要道路的坡度。

在進行城市道路平面交叉口豎向設計時,要爭取相交路段中至少有一條路段的排水坡度是朝向交叉口外端的,同時要避免相交路段的路面雨水流過交叉口中相交路段共同路面部分,而必須在過街人行橫道前或路緣石轉角曲線的結合處布設雨水口攔截路段雨水。

3.2、交叉形式的選擇

城市道路平面交叉口的豎向形式一般可參照覆盆式、盆式、斜坡式、馬鞍式、山脊式、山谷式六種典型形式進行設計,每一種典型形式對應于一種相交路段縱坡坡向的組合,具有自己相應的排水特點,需要在典型部位布置排水雨水口,以利于路面雨水的排放。

4、針對道路的控制燈設計

市政道路的節點部分就是對信號控制燈的全面利用,而且道路的控制燈是對道路節點設計最明顯也最有效的安排和設計,因為信號燈的出現就是人、車通行有序的必要保障,排除了不良天氣下影響人力指揮的困難。信號燈起到了控制、整流、和立交分離的作用特點,在信號燈強弱明暗的信息指示下,道路的行人車輛才停走有序,市政道路的建設節點交通設計才有科學的依據,而且道路的控制燈設計就是將道路中最重要的平衡問題進行節制,始終能夠在道路的節點環節上發揮重要作用,例如:在高峰期能夠保持不變的將交通節奏穩定進行。而且交通信號燈也有更多新的創造和表現形式,例如:立體交叉、環形交叉等信號表現形式,從本質上將道路節點交通設計進行了最全面的保障。所以必須要實施交叉點的針對性設計和分析,因此信號燈控制的平面交叉路通狀況更加的穩定一些,在總體上說道路交叉和道路節點設計是一樣的,例題較差的出現,道路節點才有更多的設計實踐工序。所以在城市的道路節點設計中一‘定要把交叉點和信號燈作為最主要的參考,才能夠從實際上保證城市的道路建設通暢和諧有序。

5、結語

綜上,進行交叉口設計,既要保證車輛在交叉口能以最短的時間順利通過,使交叉口的通行能力能適應各條道路的行車要求,又要通過正確合理的豎向設計,保證轉彎車輛的行車穩定,同時符合排水要求。節點交通設計中要統籌兼顧才能保證市政道路的暢通。

參考文獻:

[1]朱勝雪,陸鍵公路平面交叉口安全評價指標及方法[J].交通運輸工程與信息學報,2011,3

[2]白雪松.對城市道路交叉口的完善設計分析[J].科技資訊,2012,9

集成電路設計方法范文第3篇

在非微電子專業如計算機、通信、信號處理、自動化、機械等專業開設集成電路設計技術相關課程,一方面,這些專業的學生有電子電路基礎知識,又有自己本專業的知識,可以從本專業的系統角度來理解和設計集成電路芯片,非常適合進行各種應用的集成電路芯片設計階段的工作,這些專業也是目前芯片設計需求最旺盛的領域;另一方面,對于這些專業學生的應用特點,不宜也不可能開設微電子專業的所有課程,也不宜將集成電路設計階段的許多技術(如低功耗設計、可測性設計等)開設為單獨課程,而是要將相應課程整合,開設一到二門集成電路設計的綜合課程,使學生既能夠掌握集成電路設計基本技術流程,也能夠了解集成電路設計方面更深層的技術和發展趨勢。因此,在課程的具體設置上,應該把握以下原則。理論講授與實踐操作并重集成電路設計技術是一門實踐性非常強的課程。隨著電子信息技術的飛速發展,采用EDA工具進行電路輔助設計,已經成為集成電路芯片主流的設計方法。因此,在理解電路和芯片設計的基本原理和流程的基礎上,了解和掌握相關設計工具,是掌握集成電路設計技術的重要環節。技能培訓與前瞻理論皆有在課程的內容設置中,既要有使學生掌握集成電路芯片設計能力和技術的講授和實踐,又有對集成電路芯片設計新技術和更高層技術的介紹。這樣通過本門課程的學習,一方面,學員掌握了一項實實在在有用的技術;另一方面,學員了解了該項技術的更深和更新的知識,有利于在碩、博士階段或者在工作崗位上,對集成電路芯片設計技術的繼續研究和學習。基礎理論和技術流程隔離由于是針對非微電子專業開設的課程,因此在課程講授中不涉及電路設計的一些原理性知識,如半導體物理及器件、集成電路的工藝原理等,而是將主要精力放在集成電路芯片的設計與實現技術上,這樣非微電子專業的學生能夠很容易入門,提高其學習興趣和熱情。

2非微電子專業集成電路設計課程實踐

根據以上原則,信息工程大學根據具體實際,在計算機、通信、信號處理、密碼等相關專業開設集成電路芯片設計技術課程,根據近兩年的教學情況來看,取得良好的效果。該課程的主要特點如下。優化的理論授課內容

1)集成電路芯片設計概論:介紹IC設計的基本概念、IC設計的關鍵技術、IC技術的發展和趨勢等內容。使學員對IC設計技術有一個大概而全面的了解,了解IC設計技術的發展歷程及基本情況,理解IC設計技術的基本概念;了解IC設計發展趨勢和新技術,包括軟硬件協同設計技術、IC低功耗設計技術、IC可重用設計技術等。

2)IC產業鏈及設計流程:介紹集成電路產業的歷史變革、目前形成的“四業分工”,以及數字IC設計流程等內容。使學員了解集成電路產業的變革和分工,了解設計、制造、封裝、測試等環節的一些基本情況,了解數字IC的整個設計流程,包括代碼編寫與仿真、邏輯綜合與布局布線、時序驗證與物理驗證及芯片面積優化、時鐘樹綜合、掃描鏈插入等內容。

3)RTL硬件描述語言基礎:主要講授Verilog硬件描述語言的基本語法、描述方式、設計方法等內容。使學員能夠初步掌握使用硬件描述語言進行數字邏輯電路設計的基本語法,了解大型電路芯片的基本設計規則和設計方法,并通過設計實踐學習和鞏固硬件電路代碼編寫和調試能力。

4)系統集成設計基礎:主要講授更高層次的集成電路芯片如片上系統(SoC)、片上網絡(NoC)的基本概念和集成設計方法。使學員初步了解大規模系統級芯片架構設計的基礎方法及主要片內嵌入式處理器核。豐富的實踐操作內容

1)Verilog代碼設計實踐:學習通過課下編碼、上機調試等方式,初步掌握使用Verilog硬件描述語言進行基本數字邏輯電路設計的能力,并通過給定的IP核或代碼模塊的集成,掌握大型芯片電路的集成設計能力。

2)IC前端設計基礎實踐:依托Synopsys公司數字集成電路前端設計平臺DesignCompiler,使學員通過上機演練,初步掌握使用DesignCompiler進行集成電路前端設計的流程和方法,主要包括RTL綜合、時序約束、時序優化、可測性設計等內容。

3)IC后端設計基礎實踐:依托Synopsys公司數字集成電路后端設計平臺ICCompiler,使學員通過上機演練,初步掌握使用ICCompiler進行集成電路后端設計的流程和方法,主要包括后端設計準備、版圖規劃與電源規劃、物理綜合與全局優化、時鐘樹綜合、布線操作、物理驗證與最終優化等內容。靈活的考核評價機制

1)IC設計基本知識筆試:通過閉卷考試的方式,考查學員隊IC設計的一些基本知識,如基本概念、基本設計流程、簡單的代碼編寫等。

2)IC設計上機實踐操作:通過上機操作的形式,給定一個具體并相對簡單的芯片設計代碼,要求學員使用Synopsys公司數字集成電路設計前后端平臺,完成整個芯片的前后端設計和驗證流程。

3)IC設計相關領域報告:通過撰寫報告的形式,要求學員查閱IC設計領域的相關技術文獻,包括該領域的前沿研究技術、設計流程中相關技術點的深入研究、集成電路設計領域的發展歷程和趨勢等,撰寫相應的專題報告。

3結語

集成電路設計方法范文第4篇

關鍵詞:集成電路設計;應用型人才;課程改革

中圖分類號:G642.0 文獻標志碼:A 文章編號:1674-9324(2016)14-0059-02

一、引言

在過去的20多年來,中國教育實現兩大歷史性跨越。第一是實現了基本普及義務教育,基本掃除青壯年文盲的目標;第二是中國高等教育開始邁入大眾化階段,高教毛入學率達到17%。據《2012年中國大學生就業報告》顯示[1],在2011年畢業的大學生中,有近57萬人處于失業狀態,10多萬人選擇“啃老”;即使工作一年的人,對工作的滿意率也只有47%。2012年,全國普通高校畢業生規模達到680萬人,畢業人數再創新高,大學生將面臨越來越沉重的就業壓力。面對這樣的困境,國家相關部分提出了一系列的舉措,其中對本科畢業生的培養目標逐漸向應用型人才轉變[2-4]。集成電路作為信息產業的基礎和核心,是國民經濟和社會發展的戰略性產業,已成為當前國際競爭的焦點和衡量一個國家或地區現代化程度以及綜合國力的重要標志。本文將在對集成電路設計專業特點分析的基礎上,以北京信息科技大學集成電路設計專業課程設置為例,介紹面向應用型人才培養目標地集成電路設計本科課程現階段存在的問題并給出相關可行的改革方案。

二、集成電路設計專業特點

進入本世紀后,我國的集成電路發展迅速,集成電路設計需求劇增。為了適應社會發展的需要,國家開始加大推廣集成電路設計相關課程的本科教學工作[5]。經過十年多的發展,集成電路設計專業特色也越來越明顯。

首先,集成電路設計專業對學生的專業基礎知識要求高。隨著工藝的不斷進步,集成電路芯片的尺寸不斷下降,芯片功能不斷增強,功耗越來越低,速度越來越快。但隨著器件尺寸的不斷下降,組成芯片的最基本單元――“器件”的高階特性對電路性能的影響越來越大。除了器件基礎,電路設計人員同時還需要了解后端電路設計相關的版圖、工藝、封裝、測試等相關基礎知識,而這些流程環環相扣,任何一個環節出現問題,很難想象芯片能正常工作[6]。因此,對于一個合格的電路設計人員,深厚的專業基礎知識是必不可少的。

其次,集成電路設計專業需要學生對各種電子設計自動化工具熟悉,實踐能力強。隨著電子設計自動化工具的不斷發展,在電路設計的每一個階段,電路設計人員可以通過計算機完成電路設計的部分或全部的相關內容。另一方面,電子設計自動化工具的相關比較多,即使是同一家公司的同一種軟件的更新速度相當快,集成電路設計工具種類繁多,而且沒有統一的標準這對集成電路設計教學增加了很大的難度。

再次,集成電路設計專業的相關教學工作量大。正如前面所介紹,要完成一個電路芯片的設計,需要電路設計人員需要了解從器件基礎到電路搭建、電路仿真調試、版圖、工藝、封裝、測試等相關知識,同時還要通過實驗熟悉各種電子設計自動化工具的使用。所有相關內容對集成電路設計專業的教學內容提出了更多的要求,但從現有的情況看,相關專業的課時數目難以改變,所以在有限的課時內如何合理分配教學內容是集成電路設計專業教師重要的工作。

最后,集成電路設計專業對配套的軟、硬件平臺要求高,投入資金成本高。從現有的情況看,國際上有4大集成電路設計EDA公司,還有很多中、小型EDA公司。每個公司的產品各不相同,即使針對相同的電路芯片,設計自動化工具也各不相同。在硬件方面,軟件的安裝通常在高性能的服務器上,因此,硬件方面的成本也很高。軟硬件方面的成本嚴重地阻礙了國內很多高等院校的集成電路設計專業發展。

三、集成電路設計專業課程設置及存在的問題

在集成電路設計專業課程設置方面,不同的學校的課程設置各不相同。但總的來說可以分為三類:基礎課、專業課和選修課。在三類課程的設置方面,每個學校的定義各不相同,主要是根據本校集成電路設計專業的側重點不同而有所區別。從國內幾大相關院校的課程設置看,基礎課主要包括:《固體物理》、《半導體物理》、《晶體管原理》、《模擬電子技術》、《數字電子技術》等;專業課主要包括:《模擬集成電路設計》、《數字集成電路設計》、《信號處理》、《高頻電路》等;選修課主要包括:《集成電路EDA》、《集成電路芯片測試》、《集成電路版圖設計》、《集成電路封裝》等。

從現有的課程設置可以看到,針對國家應用型人才培養目標,現有的課程設置還存在很多問題,具體地說:

首先,課程設置偏于理論課程,實踐內容缺乏,不符合應用型人才的培養目標要求。從上面的課程設置情況可以看到,各大高校在課程安排方面都側重于理論教學,缺乏實踐內容。比如:《模擬集成電路設計》課程總學時為48,實驗學時為8,遠遠低于實際需求,難以在短短8學時內完成模擬集成電路設計相關實踐活動。雖然集成電路設計專業對于專業基礎知識要求寬廣,但并不深厚,因此,浪費太多時間在每個設計流程相關的理論知識的闡述是不合適的,也不符合我國大學生的現狀。

其次,實踐活動不能與集成電路設計業界實際需要相結合,實踐內容沒有可行性。從目前各大高等院校的課程內容方面調研結果表明,對于本科教學情況,90%以上的實踐內容都是教師根據理論教學內容設置一些簡單可行的小電路,學生按照實驗指導書的內容按相關步驟操作即可完成整個實驗過程。實驗內容簡單、重復,與集成電路設計業界實際需要完全不相關,這對學生以后的就業、擇業意義不大。

最后,沒有突現學校的專業特色,不適于當今社會集成電路設計業界對本科畢業生的要求。但在競爭激烈的電子信息產業界,如果想要畢業生擇業或者就業時有更強的競爭力,各大高校需要有自己的專業特色,但現在各個高校的現狀仍然是“全面發展,沒有特色”。這對于地方高校的集成電路設計專業畢業生是一個劣勢。

四、面向應用型人才培養目標的課程改革

針對上面闡述的相關問題,本文給出了面向應用型人才培養目標的集成電路設計專業課程改革的幾點方案,具體地說:

首先,削減理論課的課時,加大實驗內容比例。理論課時遠遠高于實踐課時是當今大學生教育的一個重要弊端,這也直接導致了大學生動手能力差、實踐活動參與度低、分工合作意識薄弱。而在不增加授課學時的前提下要改變這一現象,唯一的方法就是改變授課內容,適當削減理論課的課時,加大實驗內容的比例。這樣既能滿足國家對于本科畢業生應用型人才的培養目標,也符合創新型本科生的特點。

其次,積極推進“校企聯合辦學”,讓學生更早接觸業界發展,指導擇業、就業。正如前面介紹,現在各大高等院校的教學內容理論性太強,學生在大學四年學習到的相關知識與實際應用相脫離。這也造成很大一部分本科畢業生在入職后的第一年難以進入工作狀態,工作效率差,影響后面學生的就業、擇業。如果能在學生在校期間,比如大學三年級或更早,推進“校企聯合辦學”,使學生更早了解到業界真正工作模式以及業界關注的重點,這對于學生后續進入工作非常有利,同時也能推進學校科研工作。

最后,實現優質教學資源的共享。這里的教學資源,除了包括授課筆記、教案、教學講義外還包括高水平教師。雖然現在高等教育研究相關機構也開設了一些青年教師課程培訓相關內容,但真正取得的成效還相對比較小。另外,針對集成電路設計專業來說,跟隨業界發展的相關知識更新較快,配套的軟硬件代價較高,如果能實現高校軟硬件教學資源的共享,尤其是高水平高校扶持低水平高校,這將更有利于提高畢業生的整體水平。

五、結論

本文詳細分析面對應用型人才培養目標的集成電路設計專業的特點,并在對國內相關院校集成電路設計專業調研基礎上給出集成電路設計專業的基礎課、專業課、選修課課程的內容以及教學方式情況,指出面向應用型人才培養目標現在課程設置方面存在的問題。同時,文章給出了在當今大學生招生人數劇增情況下,如何合理安排集成電路設計專業課程的方案從而實現應用型培養目標。

參考文獻:

[1]王興芬.面向應用型人才培養的實踐教學內涵建設及其管理機制改革[J].實驗技術與管理,2012,(29):117-119.

[2]殷樹娟,齊臣杰.集成電路設計的本科教學現狀及探索[J].中國電力教育,2012,(4):64-66.

[3]侯燕芝,王軍,等.實驗教學過程規范化管理的研究與實踐[J].實驗室研究與探索,2012,(10):124-126.

[4]張宏勛,和蔭林,等.高校實驗室教學文化變革的阻力及其化解[J].實驗室研究與探索,2012,(10):162-165.

集成電路設計方法范文第5篇

關鍵詞:納米尺度互連線 集總參數模型 電路仿真 CMOS射頻集成電路設計

中圖分類號:TN402 文獻標識碼:A 文章編號:1007-9416(2016)10-0176-02

1 引言

隨著半導體技術的發展,納米尺度的CMOS工藝射頻集成電路(RFIC)在工業、科技、醫藥醫療的應用越來越廣泛,且其工作頻率已經進入微波、毫米波段,如X波段、Ku波段及60GHz應用等[1]。然而,當電路的工作頻率進入到這種高頻頻段時,電路模型的精度是電路能否成功實現的關鍵所在。在電路版圖設計之后,通常是利用Assura和Calibre等工具來獲得互連線的寄生電阻和寄生電容。然而,由于電路的寄生電感比寄生電阻和寄生電容復雜且精度低,很難利用版圖驗證設計工具得到寄生電感值,因此,需要借助于電磁場仿真軟件對傳輸線進行準確模擬。然而,在電路設計初期通常需要考慮用于互連的微帶傳輸線對電路性能的影響,傳統單純利用電磁場仿真軟件進行參數提取的方法無法準確根據設計要求進行參數調整。本文構建了基于物理特性的互連線模型,該模型的寄生參數通過傳輸線物理特性和電磁場仿真軟件得到,易于計算和電路設計分析。同時,該模型的參數和頻率無關,易于電路分析,適用于射頻集成電路的設計。最后,論文詳細論述了將模型用于集成電路設計中的流程。

2 互連線寄生參數仿真模型

射頻集成電路設計中使用的互連線結構按照其類別可分為兩類:第一類是微帶線是以芯片襯底地作為其地平面,第二類是互連線是以某一金屬層(通常是第一層金屬M1)作為其地平面。對于這兩類互連線結構而言,采用襯底地平面作為公共地平面的互連線比采用底層金屬M1作為公共地的互連線更加靈活,因為在實際電路設計中受限于電路結構,其底層金屬需要作為信號線進行器件之間互連,這種情況下需要采用第一種結構來實現信號互連。然而,使用底層金屬M1作地線可以隔離襯底,減少襯底的損耗,因此在集成電路設計中兩種傳輸線結構相互并存。

圖1是互連線的模型圖,該模型為單π集總參數模型,與常規的電感π模型相似[2]。圖1中模型并聯部分表示寄生電容和電阻,串聯部分表示寄生電感和電阻。在設計窄帶寬的電路時,尤其是進行放大器電路設計,關注的是工作頻率附近的參數。所以,方框模型可以視為獨立于工作頻率,即模型在窄帶電路設計中依舊可以使用。模型中,電感L2和電阻R2為互連線自身的分布電感和分布電阻,包含了集膚效應和鄰近效應對電路的影響,而并聯電容和電阻為導線和襯底之間等效電容和等效電阻。

對于該傳輸線模型,其離散參數的矩陣近似于模擬值和實際測量值。根據等效規則,電路的參數都可由Y參數推導得出[3]。在得到每一模塊的參數后,串聯電感值,電阻值和并聯電容值都可以求出。

根據等效規則,工作頻帶的S參數應該與模擬和測試值相同。根據對Y矩陣的定義,可以推導出以下公式:

式中,為工作頻率,函數real()和函數imag()分別代表著復數的實部和虛部。

以上的公式對于大多數傳輸線是可用的,無論傳輸線是否對稱。在大多數情況下,傳輸線的Y1,Y3部分在結構上并不對稱。但是,當兩端口的反射系數的值相同時,將出現對稱的特殊情況。此時傳輸線可化簡為相同的部分,且可從電報方程中得出各元件的值。

在以上的分析中,電容,電感和電阻分別是頻率的參數,而本模型中各部分數值處理成和頻率無關的數值,這將在電路設計中產生誤差。由于替換產生的誤差可有下面公式得出:

是仿真實際S參數值,是模型的S參數值。

通常,當電路的頻率與正常工作頻率差異較大時,由于集膚效應和鄰近效應,這個誤差將會造成更加嚴重的影響。依照上述的模型,我們利用電磁場仿真軟件ADS-Momentum構建了互連傳輸線,該傳輸線采用第二類結構,該傳輸線位于的TSMC 0.18um射頻/混合信號工藝的第6層金屬上,金屬線寬6um,線長115um。工作頻率為10GHz,根據公式(2)得到集總參數模型各個參數如下:

為比較模型和實際電磁場仿真數據之間差別,公式(4)中各個數據對應模型的S參數和電磁場仿真軟件得到的S參數進行了對比,圖2是采用電磁場仿真軟件ADS-Momentum和模型部分參數對比,從圖中可以看出,電磁場仿真軟件的模型和本模型S參數的誤差遠離工作頻率段誤差越大,這是由于公式(2)中對頻率進行了近似處理,遠離工作頻率的點采用工作頻率來代替,由于這種代替,數據之間誤差越大。在其偏離中心頻率50%位置處(即15GHz和5GHz),模型和Momentum仿真數據的差異低于5%。在實際電路設計,通常需要電路設計師關注于傳輸線寄生參數對電路性能影響,此時工作頻率點附近模型簡易、準確是電路設計重點,而偏離工作頻率點的模型誤差在窄帶電路設計是可以接受的。

3 模型在射頻集成電路設計中應用

CMOS射頻集成電路設計是利用已有的有源器件和無源器件模型進行電路設計。傳統的集成電路設計首先進行電路原理圖設計,然后進行電路版圖設計,再進行參數提取,在參數提取中主要利用Cadence系統自身已有的仿真工具Assura來實現,在參數提取結束后再進行后仿真。當電路設計不滿足要求時,需要重復上述過程,然而,在上述的傳統集成電路中,由于參數提取過程的參數為分布參數,難以直接用于電路O計參數調整。同時,傳統的參數提取方法只進行了電阻和電容的參數提取,而對寄生電感沒有進行提取,這將導致電路設計的預期結果和實測結果出入較大。

為克服傳統的射頻集成電路設計的上述不足,可以將本論文的參數模型和集成電路設計相互結合。圖4是本論文的模型應用于射頻集成電路設計中流程圖,在原理圖和版圖設計中依然類似于傳統的集成電路設計方法,但版圖設計及參數提取時將版圖中的互連線單獨分離出來,利用電磁場仿真軟件ADS-Momentum電磁場仿真,仿真結束后利用模型將其中的各個互連線參數提取出來,由于互連線的寬度、長度和圖1中模型的各個參數密切相關,故將互連線得到的各個參數代入到版圖后仿真設計中,檢測互連線參數是否滿足電路設計要求。如果互連線參數滿足設計要求,則電路設計完成;否則,根據要求適當調整互連線參數,并判斷調整后參數是否滿足電路設計要求,如果滿足電路設計要求,則依據重新設計的要求進行版圖調整,完成電路設計。如果調整后的互連線參數依然不滿足電路設計要求,則依據要求進行原理圖設計調整,然后依次重復上述過程。如圖3所示。

從上述的電路設計流程可以看出,在射頻集成電路設計中應用本模型可以及時了解電路中的各個互連線參數,根據電路設計要求調整互連線參數,滿足電路設計要求。在整個設計流程中,首先根據互連線提取參數判斷是否滿足電路設計要求,進而根據設計要求調整互連線參數來滿足電路設計要求,這將簡化傳統電路設計循環,減少電路設計時間,同時通過互連線參數調整將互連線作為電路設計的一部分進行綜合考慮,這將有助于提高電路綜合性能。

4 結語

本文提出了適用電路后仿真的納米尺度互連線模型,該模型基于物理意義而構建,模型的各個參數皆為集總參數,各個參數都可以通過電磁場仿真軟件而獲得并在集成電路設計中進行調整。該集總參數的模型結構簡單,易于使用,適合于CMOS射頻集成電路設計分析中使用,同時文中給出了該模型應用于射頻集成電路設計的流程并分析了其特點,分析表明采用文中模型可以根據電路設計要求進行調整互連線的尺寸,并可將互連線參數作為電路設計的一部分進行綜合考慮,有助于提高電路綜合性能。

參考文獻

[1]A.Niknejad, “Siliconization of 60 GHz”, IEEE Microw. Mag., pp.78-85,Feb.2010.

[2]J.Rong, M.Copeland,“The modeling, characterization, and design of monolithic inductors for silicon RFICs”,IEEE Journal of Solid-state Circuits, Vol.32,No.3,pp.357-369,March 1997.

[3]廖承恩.微波技g基礎,西安:西安電子科技大學出版社,1994.12.

收稿日期:2016-09-28

主站蜘蛛池模板: 乌兰县| 天水市| 吉安市| 贵溪市| 博客| 海南省| 台中县| 瓦房店市| 陆丰市| 且末县| 乌审旗| 新沂市| 太和县| 南昌县| 会宁县| 札达县| 陕西省| 琼结县| 山丹县| 吉首市| 渑池县| 万安县| 右玉县| 津南区| 黔西| 工布江达县| 宾阳县| 资兴市| 湟中县| 隆昌县| 霍城县| 紫金县| 扎赉特旗| 顺义区| 尼玛县| 揭东县| 长泰县| 阳城县| 兴文县| 连江县| 高尔夫|