最近中文字幕2018免费版2019,久久国产劲暴∨内射新川,久久久午夜精品福利内容,日韩视频 中文字幕 视频一区

首頁(yè) > 文章中心 > 量子計(jì)算的定義

量子計(jì)算的定義

前言:想要寫(xiě)出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇量子計(jì)算的定義范文,相信會(huì)為您的寫(xiě)作帶來(lái)幫助,發(fā)現(xiàn)更多的寫(xiě)作思路和靈感。

量子計(jì)算的定義

量子計(jì)算的定義范文第1篇

關(guān)鍵詞:量子計(jì)算;遺傳算法;智能優(yōu)化;考試系統(tǒng)

中圖分類(lèi)號(hào):TP18文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1009-3044(2009)24-7068-03

Optimal Knowledge Distribution Based on the Quantum Genetic Algorithm

ZHANG Wei, HE Rong

(Yunnan Medical College, Kunming 650051, China)

Abstract: Researched the question about knowledge distribution of intelligent examination system, based on the theory of quantum computing, applied quantum genetic algorithm, to improve the strategy of knowledge distribution optimization for better coverage and efficiency.

Key words: quantum algorithm; genetic algorithm; intelligent optimization; test system

智能組卷是一種新型的計(jì)算機(jī)考試系統(tǒng)。試卷由撒布在測(cè)試區(qū)域內(nèi)的考題按一定出題規(guī)則自組織而成, 這些考題具有一定的代表性,能檢測(cè)出學(xué)生對(duì)考察科目知識(shí)的學(xué)習(xí)掌握情況。考試系統(tǒng)中,考題的分布以及組織對(duì)于提高系統(tǒng)的測(cè)試水平具有重要的意義。傳統(tǒng)的考試系統(tǒng)知識(shí)分布有兩種策略,一種是人工規(guī)劃(Planning模式),另一種是大規(guī)模的隨機(jī)分散(Scattering模式)。前者缺乏靈活性與多樣性,且效率低下,不適宜計(jì)算機(jī)組卷等大規(guī)模考試。而后者若要取得較好的分布,就必須設(shè)置遠(yuǎn)多于實(shí)際需要的考題才能較完整地覆蓋考察科目的測(cè)試區(qū)域,這與試卷中題目數(shù)量的有限性是相互矛盾的,試卷中可能存在考題不合理分布造成的測(cè)試陰影和盲區(qū)。因此考題的合理分布對(duì)智能考試系統(tǒng)的測(cè)試效果有重要的作用。盡管針對(duì)考試系統(tǒng)國(guó)內(nèi)外進(jìn)行大量的組卷算法研究,但對(duì)于知識(shí)點(diǎn)的分布優(yōu)化問(wèn)題研究工作還很少,很多研究運(yùn)用傳統(tǒng)遺傳算法組卷[1],優(yōu)化效果不盡理想。針對(duì)此問(wèn)題,本文應(yīng)用量子遺傳算法優(yōu)化知識(shí)點(diǎn)的分布,克服測(cè)試陰影和盲區(qū),使考試系統(tǒng)更大范圍地測(cè)試到更有效的學(xué)生學(xué)習(xí)信息。

1 知識(shí)覆蓋問(wèn)題

通過(guò)對(duì)考試科目的學(xué)習(xí),學(xué)生學(xué)習(xí)掌握的知識(shí)儲(chǔ)存在頭腦中。由于學(xué)生個(gè)體之間的學(xué)習(xí)差異,導(dǎo)致每個(gè)學(xué)生大腦中儲(chǔ)存和掌握的情況具有不確定性。考試的目的在于,通過(guò)試卷測(cè)試對(duì)學(xué)生學(xué)習(xí)情況做出相對(duì)確定的評(píng)價(jià)。科目知識(shí)是相對(duì)固定的,我們總是將科目知識(shí)當(dāng)作圖譜,按圖索驥地構(gòu)造出試卷去測(cè)試學(xué)生大腦中相關(guān)區(qū)域中知識(shí)的學(xué)習(xí)掌握情況,即是否掌握,掌握水平如何等。但在目標(biāo)試卷生成以前,題庫(kù)中的考題相對(duì)與目標(biāo)試卷而言表現(xiàn)為存在或不存在兩種可能形態(tài)。基于此,本文引入量子態(tài)對(duì)考題進(jìn)行描述、編碼和處理。

1.1 試卷分布構(gòu)成

試卷覆蓋是指由計(jì)算機(jī)考試系統(tǒng)生成一組考題集合(試卷)對(duì)測(cè)試區(qū)域各個(gè)知識(shí)點(diǎn)的涵蓋。試卷的目的是系統(tǒng)地測(cè)試和評(píng)價(jià)試卷覆蓋知識(shí)區(qū)域內(nèi)學(xué)生的學(xué)習(xí)情況,并對(duì)這些數(shù)據(jù)進(jìn)行處理,獲得詳盡而準(zhǔn)確的信息,傳送到需要這些信息的教師和教學(xué)管理部門(mén)。

考題是由考點(diǎn)以問(wèn)題的形式構(gòu)成的。其中考點(diǎn)與考試科目的相關(guān)知識(shí)點(diǎn)對(duì)應(yīng)。因此考題的分布是考試系統(tǒng)獲取學(xué)生學(xué)習(xí)信息的關(guān)鍵因素之一,其覆蓋范圍以及分布優(yōu)化也隨之成為研究領(lǐng)域中的重點(diǎn)。

1.2 試卷覆蓋問(wèn)題

試卷由數(shù)量有限的考題組成,每道考題包含若干有針對(duì)性的知識(shí)點(diǎn)所設(shè)置的考點(diǎn)。這些考點(diǎn)形成了考題的測(cè)試范圍。如何組織試卷完成對(duì)目標(biāo)區(qū)域的檢測(cè),就是考試系統(tǒng)覆蓋性的問(wèn)題。考題分布優(yōu)化的任務(wù)就是在保持試卷結(jié)構(gòu)完整的前提下,動(dòng)態(tài)調(diào)整考題組成,以獲得盡可能大的覆蓋率,也就是使試卷能獲得更廣泛的信息。在保持考點(diǎn)充分覆蓋的前提下,引入以下定義

假設(shè)考察科目所涵蓋的知識(shí)范圍用集合S表示,組成每套試卷的考題用集合Q={qi,i=1,2,...,n}表示,每道考題測(cè)試的知識(shí)范圍為ci,試卷的測(cè)試目標(biāo)知識(shí)區(qū)域?yàn)锳,(A?哿S),則理想的探測(cè)效果為。設(shè)為試卷有效覆蓋知識(shí)區(qū)域的度量(考點(diǎn)數(shù)),d2=A為目標(biāo)科目知識(shí)區(qū)域的度量(知識(shí)點(diǎn)數(shù)),則稱(chēng)ρ=d1/d2為試卷覆蓋度。

覆蓋性問(wèn)題不僅反映了試卷所能測(cè)試的范圍,而且通過(guò)合理的覆蓋控制還可以使試卷中的考題組合得到優(yōu)化,提高試卷的命題質(zhì)量。

1.3 約束條件

我們采用以下公理化方式對(duì)知識(shí)覆蓋問(wèn)題進(jìn)行描述(目標(biāo)):在考題集合Q={q1,q2,...,qn}中求一個(gè)子集T作為試卷,使得滿足以下約束條件。

① 各考題滿足試卷總體約束條件;

② 試卷覆蓋度ρ最大;

③ 考題數(shù)目T為最少。

3 量子遺傳算法的考題分布優(yōu)化

試卷的考題分布優(yōu)化是一個(gè)多目標(biāo)優(yōu)化問(wèn)題 ,需要在考題數(shù)與知識(shí)覆蓋率之間達(dá)到平衡。即在保持試卷中考題數(shù)目與題型符合命題要求的情況下,盡可能增加試卷的知識(shí)覆蓋度,使考題獲取最廣泛的測(cè)試信息。

3.1 量子遺傳算法

量子遺傳算法是量子計(jì)算與遺傳算法相結(jié)合的產(chǎn)物。它以量子計(jì)算的一些概念和理論為基礎(chǔ),用量子比特編碼來(lái)表示染色體,用量子門(mén)作用和量子門(mén)更新來(lái)完成進(jìn)化搜索[2]。

我們根據(jù)考題在科目知識(shí)中的分布和權(quán)重(主要是指命題價(jià)值)按字典序編號(hào),形成知識(shí)地圖的坐標(biāo)。由于題庫(kù)中的考題在目標(biāo)試卷生成以前具有不確定性,即在目標(biāo)試卷中既可能存在,也可能不存在。這符合量子力學(xué)中的測(cè)不準(zhǔn)原則。我們對(duì)這些編號(hào)進(jìn)行量子編碼,并用量子遺傳算法在命題規(guī)則的約束下進(jìn)行知識(shí)分布優(yōu)化。

3.1.1 量子編碼

1) 量子態(tài)引入

我們用Dirac算符|>和|>分別表示考題在目標(biāo)試卷中表現(xiàn)為存在或不存在的兩種可能形態(tài)。若用“1”表示存在,用“0”表示不存在。考題以疊加態(tài)的形式存在。即將一個(gè)量子比特可能處于|0>和|1>之間的中間態(tài)。可表示為:

|Ψ>=α|0>+β|1> (2)

其中α和β分別是|0>和|1>的概率幅,且滿足下列歸一化條件:

|α|2+|β|2=1(3)

式(3)中,|α|2表示量子比特的觀測(cè)值在|0>狀態(tài)的概率投影,|β|2表示量子比特的觀測(cè)值在|1>狀態(tài)的概率投影。

定義2.1滿足式(2)和式(3)的一對(duì)實(shí)數(shù)α、β稱(chēng)為一個(gè)量子比特的概率幅,記為[α,β]T。

定義2.2角度ζ(ζ∈[-π/2,π/2])定義為一個(gè)量子比特的相位,即ζ=arctan(β/α)。

2) 染色體量子編碼

我們從題型、章節(jié)、考題三個(gè)方面對(duì)試卷的染色體及種群進(jìn)行量子編碼。

其中,m為染色體的基因個(gè)體表示知識(shí)分布數(shù)量(章節(jié)數(shù));k為每個(gè)基因的量子比特?cái)?shù)表示每道題的屬性數(shù)量。n個(gè)這樣的個(gè)體構(gòu)成的種群Q(t)={q1t,q2t,...,qnt}表示試卷,其中n為題型數(shù)量。

3.1.2 量子旋轉(zhuǎn)門(mén)

量子旋轉(zhuǎn)門(mén)是實(shí)現(xiàn)演化操作的執(zhí)行機(jī)構(gòu)。[3-5]圖1為量子旋轉(zhuǎn)門(mén)示意圖。

其操作規(guī)律如下:

θi=k*f(αi,βi) (6)

其中k是一個(gè)與算法收斂速度有關(guān)的系數(shù),k的取值必須合理選取,如果k的取值過(guò)大,算法搜索的網(wǎng)格就很大,容易出現(xiàn)早熟現(xiàn)象,算法易于收斂于局部極值點(diǎn),反之,如果 k 的取值過(guò)小,則搜索速度太慢甚至?xí)幱谕顟B(tài)。因此,本文將k視為一個(gè)變量,將k定義為一個(gè)與進(jìn)化代數(shù)有關(guān)的變量,如,其中t為進(jìn)化代數(shù),max t是根據(jù)待求解的具體問(wèn)題而設(shè)定的一個(gè)常數(shù),因此k可以根據(jù)進(jìn)化代數(shù)合理地調(diào)整網(wǎng)格大小。

函數(shù)f(αi,βi)的作用是使算法朝著最優(yōu)解得方向搜索。本文采用表1的搜索策略。其原理是使當(dāng)前解逐漸逼近搜索到的最佳解,從而確定量子旋轉(zhuǎn)門(mén)的旋轉(zhuǎn)方向。其中符號(hào)e表示α和β的乘積,即e=α*β,e的正負(fù)值代表此量子比特的相位ζ在平面坐標(biāo)中所處的象限。 如果 e的值為正,則表示ζ處于第一、三象限,否則處于第二或第四象限。

在表1中,α1和β1是搜索到的最佳節(jié)的概率幅,α2和β2是當(dāng)前解的概率幅,當(dāng)e1,e2同時(shí)大于0時(shí),意味著當(dāng)前解和搜索到的最佳解均處于第一或第三象限。當(dāng)|ζ1|>|ζ2|時(shí),表明當(dāng)前解應(yīng)朝著逆時(shí)針?lè)较蛐D(zhuǎn),其值為 +1,反之為 -1。同理可推出其他三種情況。

這樣,量子門(mén)的更新過(guò)程可以描述為qjt+1=G(t)*qjt其中,上標(biāo)t為進(jìn)化代數(shù),G(t)為第t代量子門(mén),為第t代某個(gè)個(gè)體的概率幅,qjt+1為第t+1代相應(yīng)個(gè)體的概率幅。

3.1.3 量子遺傳算法流程(見(jiàn)圖2)

①初始化種群,種群Q={q1,q2,...,qn},其中qj為種群中的第 j 個(gè)個(gè)體。 令種群中全部的染色體基因(αi,βi) (i=1,2,...,m)都被初始化為,這意味著一個(gè)染色體所表達(dá)的是其所有可能狀態(tài)的等概率疊加。同時(shí)初始化進(jìn)化代數(shù)t=0。

②量子坍塌法測(cè)量:對(duì)處于疊加態(tài)的量子位進(jìn)行觀測(cè)時(shí),疊加態(tài)將因此受到干擾,并發(fā)生變化,稱(chēng)為坍塌。擾動(dòng)使為疊加態(tài)坍縮為基本態(tài)。確定種群大小n和量子位的數(shù)目m,包含n個(gè)個(gè)體的種群通過(guò)量子坍塌,得到P(t),其中為第t代種群的第j個(gè)解(即第j個(gè)個(gè)體的測(cè)量值),表現(xiàn)形式為長(zhǎng)度m為的二進(jìn)制串,其中每一位為0或1。(量子坍塌即對(duì)Q進(jìn)行測(cè)量,測(cè)量的步驟是生成一個(gè)[0,1] 之間的隨機(jī)數(shù),若其大于概率幅的平方,則測(cè)量結(jié)果值取1,否則取0。

③群體的適應(yīng)度評(píng)價(jià),保存最優(yōu)解作為下一步演化的目標(biāo)值。

④算法進(jìn)入循環(huán)。首先判斷是否滿足算法終止條件,如果滿足,則程序運(yùn)行結(jié)束;否則對(duì)種群中個(gè)體實(shí)施一次測(cè)量,獲得一組解及其相應(yīng)的適應(yīng)度。

⑤根據(jù)當(dāng)前的演化目標(biāo),運(yùn)用量子旋轉(zhuǎn)門(mén)進(jìn)行調(diào)整更新,獲得子代種群。調(diào)整過(guò)程為根據(jù)式(6)計(jì)算量子旋轉(zhuǎn)門(mén)的旋轉(zhuǎn)角,并應(yīng)用式(5)作用于種群中的所有個(gè)體的概率幅,即更新Q。

⑥群體災(zāi)變:當(dāng)接連數(shù)代的最優(yōu)個(gè)體為局部極值,這時(shí)就實(shí)行群體災(zāi)變操作,即對(duì)進(jìn)化過(guò)程中的種群施加一個(gè)較大擾動(dòng),使其脫離局部最優(yōu)點(diǎn),開(kāi)始新的搜索。具體操作為:只保留最優(yōu)值,重新生成其余個(gè)體。

⑦迭代與終止進(jìn)化代數(shù)t'=t+1,算法轉(zhuǎn)至式(2)繼續(xù)執(zhí)行,直到算法結(jié)束。

4 仿真試驗(yàn)

為了驗(yàn)證算法的有效性,我們對(duì)傳統(tǒng)遺傳算法(CGA)與量子遺傳算法(QGA)所獲得的考題知識(shí)覆蓋度進(jìn)行仿真對(duì)比。我們將考題對(duì)考查科目所含知識(shí)的覆蓋問(wèn)題簡(jiǎn)化為:用12個(gè)半徑為200的圓所代表的考題去覆蓋一塊1200×1000的二維平面內(nèi)用矩形代表的知識(shí)區(qū)域;種群個(gè)體數(shù) P = 45,量子位數(shù)目 m = 30,運(yùn)行 600 代。算法運(yùn)行結(jié)果對(duì)照如下。

從圖3所示考題知識(shí)分布優(yōu)化中覆蓋度的變化特性可以看出在不同階段的變化中,量子遺傳算法優(yōu)化性能高于傳統(tǒng)遺傳算法而且穩(wěn)定性也更強(qiáng)。

5 結(jié)論

在試卷中存在考題不合理分布造成的測(cè)試陰影和盲區(qū)。通過(guò)量子遺傳算法優(yōu)化考題分布,使其在保證命題要求的情況下,用最少的考題取得最大的覆蓋率,可以有效地消除探測(cè)區(qū)域內(nèi)的陰影和盲點(diǎn)。仿真結(jié)果也表明,算法能夠較好地完成試卷考題的分布優(yōu)化,從而有效提高試卷的測(cè)試能力,對(duì)于實(shí)際的試卷命制提供了可靠的解決方案和調(diào)整依據(jù)。本文提出了創(chuàng)新性的考題分布的優(yōu)化方法,即確立了試卷的覆蓋模型,并以此為目標(biāo)函數(shù),運(yùn)用量子遺傳算法對(duì)考題分布進(jìn)行優(yōu)化。

參考文獻(xiàn):

[1] 張維,何蓉. 基于參數(shù)估計(jì)的遺傳算法組卷研究[J]. 云南民族大學(xué)學(xué)報(bào),2009,18(3):276-278.

[2] Donald A.Prospective Algorithms for Quantum Evolutionary Computation[C].Proc of the 2nd Quantum Interaction Symposium (QI-2008), College Publications, UK, 2008.

[3] 黃友銳. 智能優(yōu)化算法及其應(yīng)用[M]. 北京:國(guó)防工業(yè)出版社,2008:38-40.

量子計(jì)算的定義范文第2篇

【關(guān)鍵詞】量子計(jì)算;量子計(jì)算機(jī);量子算法;量子信息處理

1、引言

在人類(lèi)剛剛跨入21山_紀(jì)的時(shí)刻,!日_界科技的重大突破之一就是量子計(jì)算機(jī)的誕生。德國(guó)科學(xué)家已在實(shí)驗(yàn)室研制成功5個(gè)量子位的量子計(jì)算機(jī),而美國(guó)LosAlamos國(guó)家實(shí)驗(yàn)室正在進(jìn)行7個(gè)量子位的量子計(jì)算機(jī)的試驗(yàn)。它預(yù)示著人類(lèi)的信息處理技術(shù)將會(huì)再一次發(fā)生巨大的飛躍,而研究面向量子計(jì)算機(jī)以量子計(jì)算為基礎(chǔ)的量子信息處理技術(shù)已成為一項(xiàng)十分緊迫的任務(wù)。

2、子計(jì)算的物理背景

任何計(jì)算裝置都是一個(gè)物理系統(tǒng)。量子計(jì)算機(jī)足根據(jù)物理系統(tǒng)的量子力學(xué)性質(zhì)和規(guī)律執(zhí)行計(jì)算任務(wù)的裝置。量子計(jì)算足以量子計(jì)算目L為背景的計(jì)算。是在量了力。4個(gè)公設(shè)(postulate)下做出的代數(shù)抽象。Feylllilitn認(rèn)為,量子足一種既不具有經(jīng)典耗子性,亦不具有經(jīng)典渡動(dòng)性的物理客體(例如光子)。亦有人將量子解釋為一種量,它反映了一些物理量(如軌道能級(jí))的取值的離散性。其離散值之問(wèn)的差值(未必為定值)定義為量子。按照量子力學(xué)原理,某些粒子存在若干離散的能量分布。稱(chēng)為能級(jí)。而某個(gè)物理客體(如電子)在另一個(gè)客體(姻原子棱)的離散能級(jí)之間躍遷(transition。粒子在不同能量級(jí)分布中的能級(jí)轉(zhuǎn)移過(guò)程)時(shí)將會(huì)吸收或發(fā)出另一種物理客體(如光子),該物理客體所攜帶的能量的值恰好是發(fā)生躍遷的兩個(gè)能級(jí)的差值。這使得物理“客體”和物理“量”之問(wèn)產(chǎn)生了一個(gè)相互溝通和轉(zhuǎn)化的橋梁;愛(ài)因斯坦的質(zhì)能轉(zhuǎn)換關(guān)系也提示了物質(zhì)和能量在一定條件下是可以相互轉(zhuǎn)化的因此。量子的這兩種定義方式是對(duì)市統(tǒng)并可以相互轉(zhuǎn)化的。量子的某些獨(dú)特的性質(zhì)為量了計(jì)算的優(yōu)越性提供了基礎(chǔ)。

3、量子計(jì)算機(jī)的特征

量子計(jì)算機(jī),首先是能實(shí)現(xiàn)量子計(jì)算的機(jī)器,是以原子量子態(tài)為記憶單元、開(kāi)關(guān)電路和信息儲(chǔ)存形式,以量子動(dòng)力學(xué)演化為信息傳遞與加工基礎(chǔ)的量子通訊與量子計(jì)算,是指組成計(jì)算機(jī)硬件的各種元件達(dá)到原子級(jí)尺寸,其體積不到現(xiàn)在同類(lèi)元件的1%。量子計(jì)算機(jī)是一物理系統(tǒng),它能存儲(chǔ)和處理關(guān)于量子力學(xué)變量的信息。量子計(jì)算機(jī)遵從的基本原理是量子力學(xué)原理:量子力學(xué)變量的分立特性、態(tài)迭加原理和量子相干性。信息的量子就是量子位,一位信息不是0就是1,量子力學(xué)變量的分立特性使它們可以記錄信息:即能存儲(chǔ)、寫(xiě)入、讀出信息,信息的一個(gè)量子位是一個(gè)二能級(jí)(或二態(tài))系統(tǒng),所以一個(gè)量子位可用一自旋為1/2的粒子來(lái)表示,即粒子的自旋向上表示1,自旋向下表示0;或者用一光子的兩個(gè)極化方向來(lái)表示0和1;或用一原子的基態(tài)代表0第一激發(fā)態(tài)代表1。就是說(shuō)在量子計(jì)算機(jī)中,量子信息是存儲(chǔ)在單個(gè)的自旋’、光子或原子上的。對(duì)光子來(lái)說(shuō),可以利用Kerr非線性作用來(lái)轉(zhuǎn)動(dòng)一光束使之線性極化,以獲取寫(xiě)入、讀出;對(duì)自旋來(lái)說(shuō),則是把電子(或核)置于磁場(chǎng)中,通過(guò)磁共振技術(shù)來(lái)獲取量子信息的讀出、寫(xiě)入;而寫(xiě)入和讀出一個(gè)原子存儲(chǔ)的信息位則是用一激光脈沖照射此原子來(lái)完成的。量子計(jì)算機(jī)使用兩個(gè)量子寄存器,第一個(gè)為輸入寄存器,第二個(gè)為輸出寄存器。函數(shù)的演化由幺正演化算符通過(guò)量子邏輯門(mén)的操作來(lái)實(shí)現(xiàn)。單量子位算符實(shí)現(xiàn)一個(gè)量子位的翻轉(zhuǎn)。兩量子位算符,其中一個(gè)是控制位,它確定在什么情況下目標(biāo)位才發(fā)生改變;另一個(gè)是目標(biāo)位,它確定目標(biāo)位如何改變;翻轉(zhuǎn)或相位移動(dòng)。還有多位量子邏輯門(mén),種類(lèi)很多。要說(shuō)清楚量子計(jì)算,首先看經(jīng)典計(jì)算。經(jīng)典計(jì)算機(jī)從物理上可以被描述為對(duì)輸入信號(hào)序列按一定算法進(jìn)行交換的機(jī)器,其算法由計(jì)算機(jī)的內(nèi)部邏輯電路來(lái)實(shí)現(xiàn)。經(jīng)典計(jì)算機(jī)具有如下特點(diǎn):

a)其輸入態(tài)和輸出態(tài)都是經(jīng)典信號(hào),用量子力學(xué)的語(yǔ)言來(lái)描述,也即是:其輸入態(tài)和輸出態(tài)都是某一力學(xué)量的本征態(tài)。如輸入二進(jìn)制序列0110110,用量子記號(hào),即10110110>。所有的輸入態(tài)均相互正交。對(duì)經(jīng)典計(jì)算機(jī)不可能輸入如下疊加Cl10110110>+C2I1001001>。

b)經(jīng)典計(jì)算機(jī)內(nèi)部的每一步變換都將正交態(tài)演化為正交態(tài),而一般的量子變換沒(méi)有這個(gè)性質(zhì),因此,經(jīng)典計(jì)算機(jī)中的變換(或計(jì)算)只對(duì)應(yīng)一類(lèi)特殊集。

相應(yīng)于經(jīng)典計(jì)算機(jī)的以上兩個(gè)限制,量子計(jì)算機(jī)分別作了推廣。量子計(jì)算機(jī)的輸入用一個(gè)具有有限能級(jí)的量子系統(tǒng)來(lái)描述,如二能級(jí)系統(tǒng)(稱(chēng)為量子比特),量子計(jì)算機(jī)的變換(即量子計(jì)算)包括所有可能的幺正變換。因此量子計(jì)算機(jī)的特點(diǎn)為:

a)量子計(jì)算機(jī)的輸入態(tài)和輸出態(tài)為一般的疊加態(tài),其相互之間通常不正交;

b)量子計(jì)算機(jī)中的變換為所有可能的幺正變換。得出輸出態(tài)之后,量子計(jì)算機(jī)對(duì)輸出態(tài)進(jìn)行一定的測(cè)量,給出計(jì)算結(jié)果。由此可見(jiàn),量子計(jì)算對(duì)經(jīng)典計(jì)算作了極大的擴(kuò)充,經(jīng)典計(jì)算是一類(lèi)特殊的量子計(jì)算。量子計(jì)算最本質(zhì)的特征為量子疊加性和相干性。量子計(jì)算機(jī)對(duì)每一個(gè)疊加分量實(shí)現(xiàn)的變換相當(dāng)于一種經(jīng)典計(jì)算,所有這些經(jīng)典計(jì)算同時(shí)完成,并按一定的概率振幅疊加起來(lái),給出量子計(jì)算的輸出結(jié)果。這種計(jì)算稱(chēng)為量子并行計(jì)算,量子并行處理大大提高了量子計(jì)算機(jī)的效率,使得其可以完成經(jīng)典計(jì)算機(jī)無(wú)法完成的工作,這是量子計(jì)算機(jī)的優(yōu)越性之一。

4、量子計(jì)算機(jī)的應(yīng)用

量子計(jì)算機(jī)驚人的運(yùn)算能使其能夠應(yīng)用于電子、航空、航人、人文、地質(zhì)、生物、材料等幾乎各個(gè)學(xué)科領(lǐng)域,尤其是信息領(lǐng)域更是迫切需要量子計(jì)算機(jī)來(lái)完成大量數(shù)據(jù)處理的工作。信息技術(shù)與量子計(jì)算必然走向結(jié)合,形成新興的量子信息處理技術(shù)。目前,在信息技術(shù)領(lǐng)域有許多理論上非常有效的信息處理方法和技術(shù),由于運(yùn)算量龐大,導(dǎo)致實(shí)時(shí)性差,不能滿足實(shí)際需要,因此制約了信息技術(shù)的發(fā)展。量子計(jì)算機(jī)自然成為繼續(xù)推動(dòng)計(jì)算速度提高,進(jìn)而引導(dǎo)各個(gè)學(xué)科全面進(jìn)步的有效途徑之一。在目前量子計(jì)算機(jī)還未進(jìn)入實(shí)際應(yīng)用的情況下,深入地研究量子算法是量子信息處理領(lǐng)域中的主要發(fā)展方向,其研究重點(diǎn)有以下三個(gè)方面;

(1)深刻領(lǐng)悟現(xiàn)有量子算法的木質(zhì),從中提取能夠完成特定功能的量子算法模塊,用其代替經(jīng)典算法中的相應(yīng)部分,以便盡可能地減少現(xiàn)有算法的運(yùn)算量;

(2)以現(xiàn)有的量子算法為基礎(chǔ),著手研究新型的應(yīng)用面更廣的信息處理量子算法;

(3)利用現(xiàn)有的計(jì)算條件,盡量模擬量子計(jì)算機(jī)的真實(shí)運(yùn)算環(huán)境,用來(lái)驗(yàn)證和開(kāi)發(fā)新的算法。

5、量子計(jì)算機(jī)的應(yīng)用前景

目前經(jīng)典的計(jì)算機(jī)可以進(jìn)行復(fù)雜計(jì)算,解決很多難題。但依然存在一些難解問(wèn)題,它們的計(jì)算需要耗費(fèi)大量的時(shí)間和資源,以致在宇宙時(shí)間內(nèi)無(wú)法完成。量子計(jì)算研究的一個(gè)重要方向就是致力于這類(lèi)問(wèn)題的量子算法研究。量子計(jì)算機(jī)首先可用于因子分解。因子分解對(duì)于經(jīng)典計(jì)算機(jī)而言是難解問(wèn)題,以至于它成為共鑰加密算法的理論基礎(chǔ)。按照Shor的量子算法,量子計(jì)算機(jī)能夠以多項(xiàng)式時(shí)間完成大數(shù)質(zhì)因子的分解。量子計(jì)算機(jī)還可用于數(shù)據(jù)庫(kù)的搜索。1996年,Grover發(fā)現(xiàn)了未加整理數(shù)據(jù)庫(kù)搜索的Grover迭代量子算法。使用這種算法,在量子計(jì)算機(jī)上可以實(shí)現(xiàn)對(duì)未加整理數(shù)據(jù)庫(kù)Ⅳ的平方根量級(jí)加速搜索,而且用這種加速搜索有可能解決經(jīng)典上所謂的NP問(wèn)題。量子計(jì)算機(jī)另一個(gè)重要的應(yīng)用是計(jì)算機(jī)視覺(jué),計(jì)算機(jī)視覺(jué)是一種通過(guò)二維圖像理解三維世界的結(jié)構(gòu)和特性的人工智能。計(jì)算機(jī)視覺(jué)的一個(gè)重要領(lǐng)域是圖像處理和模式識(shí)別。由于圖像包含的數(shù)據(jù)量很大,以致不得不對(duì)圖像數(shù)據(jù)進(jìn)行壓縮。這種壓縮必然會(huì)損失一部分原始信息。

作者簡(jiǎn)介:

量子計(jì)算的定義范文第3篇

量子力學(xué)完美地解釋了在各種尺度之下物質(zhì)的行為,在所有物質(zhì)科學(xué)中是最成功的理論,但也是最詭異的理論。

在量子領(lǐng)域里,粒子似乎可以同時(shí)出現(xiàn)在兩個(gè)地方,信息傳遞速度可以比光速快,而貓可以同時(shí)既是死的又是活的!物理學(xué)家已經(jīng)對(duì)這些量子世界中吊詭的事情困惑了90年,但他們現(xiàn)在還是一籌莫展。當(dāng)演化論和宇宙論已經(jīng)成為一般知識(shí)時(shí),量子理論仍然讓人認(rèn)為是奇特的異常事物;盡管在設(shè)計(jì)電子產(chǎn)品時(shí),它是很棒的操作手冊(cè),此外就沒(méi)什么用處了。由于人們對(duì)于量子理論的意義有著深度混淆,便繼續(xù)加深一種印象:量子理論想急切傳達(dá)的深?yuàn)W道理,與日常生活無(wú)關(guān),而且因?yàn)檫^(guò)于怪異,以至于一點(diǎn)也不重要。

在2001年,有個(gè)研究團(tuán)隊(duì)開(kāi)始發(fā)展一種模型,或許可以去除量子物理的吊詭之處,至少也會(huì)讓這些吊詭不那么令人不安。這個(gè)模型被稱(chēng)為量子貝氏主義,它重新思考波函數(shù)的意義。

在正統(tǒng)量子理論中,一個(gè)物體(例如電子)可用波函數(shù)來(lái)表示,也就是說(shuō)波函數(shù)是一種用來(lái)描述物體性質(zhì)的數(shù)學(xué)式子。如果你想預(yù)測(cè)電子的行為,只需推導(dǎo)出它的波函數(shù)如何隨時(shí)間變化,計(jì)算的結(jié)果可以給你電子具有某種性質(zhì)(例如電子位于某處)的概率。但是如果物理學(xué)家進(jìn)一步假設(shè)波函數(shù)是真實(shí)的事物,麻煩就來(lái)了。

量子貝氏主義結(jié)合了量子理論與概率理論,認(rèn)為波函數(shù)不是客觀實(shí)在的事物;反之,它主張把波函數(shù)作為使用手冊(cè),是觀察者對(duì)于周遭(量子)世界做出適當(dāng)判斷的數(shù)學(xué)工具。明確一點(diǎn)講,觀察者了解一件事:自己的行為與抉擇會(huì)無(wú)可避免地以無(wú)法預(yù)測(cè)的方式影響被觀測(cè)系統(tǒng),因此用波函數(shù)來(lái)指明自己判斷量子系統(tǒng)具有某種特定性質(zhì)的概率大小。另一個(gè)觀察者也用波函數(shù)來(lái)描述他所看到的世界,對(duì)于同一量子系統(tǒng)而言,可能會(huì)得到完全不同的結(jié)論。觀察者的人數(shù)有多少,一個(gè)系統(tǒng)(一個(gè)事件)可能擁有不同的波函數(shù)就有多少。在觀察者相互溝通、并且修正了各自的波函數(shù)以涵蓋新得到的知識(shí)之后,一個(gè)有條理的世界觀就浮現(xiàn)了。

最近才轉(zhuǎn)而接受量子貝氏主義的美國(guó)康奈爾大學(xué)理論物理學(xué)家摩明這么說(shuō):“在此觀點(diǎn)之下,波函數(shù)或許是‘我們所發(fā)現(xiàn)最有威力的抽象概念’。”

波函數(shù)不是真實(shí)的事物,這種想法早在20世紀(jì)30年代就出現(xiàn)了,那時(shí)量子力學(xué)創(chuàng)建者之一的尼爾斯·波爾在其文章中已經(jīng)這么說(shuō)。他認(rèn)為量子理論僅僅是計(jì)算工具,即量子論只是“純符號(hào)性”的架構(gòu)而已,而波函數(shù)是工具的一部分。量子貝氏主義是第一個(gè)為波耳的主張找到數(shù)學(xué)基礎(chǔ)的模型,它把量子理論與貝氏統(tǒng)計(jì)結(jié)合起來(lái)。貝氏統(tǒng)計(jì)是一門(mén)有200年歷史的統(tǒng)計(jì)學(xué),這門(mén)學(xué)問(wèn)把“概率”定義成某種類(lèi)似“主觀信念”的事物。一旦新信息出現(xiàn),我們的主觀信念也必須跟著更新。針對(duì)如何更新,貝氏統(tǒng)計(jì)定下了明確的數(shù)學(xué)規(guī)則。量子貝氏主義把波函數(shù)解釋成一種會(huì)依據(jù)貝氏統(tǒng)計(jì)規(guī)則來(lái)更新的主觀信念,如此一來(lái),量子貝氏主義的鼓吹者相信神秘的量子力學(xué)吊詭就消失了。

以電子為例,每當(dāng)我們偵測(cè)到一個(gè)電子,就會(huì)發(fā)現(xiàn)它一定是位于某個(gè)位置;但是當(dāng)我們不去看它,則電子的波函數(shù)可能是散開(kāi)的,代表了電子在某一時(shí)刻處于不同地方的可能性;如果我們?cè)偃タ此謺?huì)看到電子出現(xiàn)在某一個(gè)位置。根據(jù)標(biāo)準(zhǔn)說(shuō)法,觀測(cè)促使波函數(shù)在一瞬間“崩陷”而集中于某一個(gè)位置之上。

空間各處的崩陷發(fā)生于同一時(shí)刻,這種情形似乎違背了“局域性原理”(即物體的任何改變一定是由其附近的另一物體所引起的),如此一來(lái)就會(huì)引發(fā)一些如愛(ài)因斯坦稱(chēng)為“鬼魅般的超距作用”的困惑。

量子力學(xué)一誕生,物理學(xué)家就知道“波函數(shù)的崩陷”是這個(gè)理論深深困擾人的一項(xiàng)特點(diǎn)。這個(gè)令人不安的謎促使物理學(xué)家發(fā)展出各種量子力學(xué)的詮釋?zhuān)嵌紱](méi)能完全成功。

然而量子貝氏主義說(shuō)量子力學(xué)根本沒(méi)有任何詭異之處。波函數(shù)崩陷只是表示觀察者依據(jù)新信息,忽然且不連續(xù)地更新了他原先分配的概率,就好像醫(yī)生依據(jù)新的計(jì)算機(jī)斷層掃描結(jié)果,而修正了對(duì)癌癥病人病況的判斷。量子系統(tǒng)并沒(méi)有經(jīng)歷什么奇怪、不可解釋的變化,改變的是(觀察者選用的)波函數(shù),波函數(shù)呈現(xiàn)的是觀察者個(gè)人的期待。

量子計(jì)算的定義范文第4篇

關(guān)鍵詞:基因 基因概念 歷史淵源

中圖分類(lèi)號(hào):Q3 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-3791(2012)08(b)-0234-03

遺傳學(xué)是研究生物起源,基因和基因組結(jié)構(gòu)、功能及其演變規(guī)律的學(xué)科,而基因的研究對(duì)促進(jìn)遺傳學(xué)發(fā)展具有重要意義。自20世紀(jì)開(kāi)始以來(lái),基因的發(fā)展經(jīng)歷了理論水平、細(xì)胞水平的遺傳學(xué)階段和分子水平上的遺傳學(xué)階段,在前人大量實(shí)驗(yàn)的基礎(chǔ)上,人們對(duì)基因的認(rèn)識(shí)不斷深入,特別是隨著人類(lèi)基因組計(jì)劃和“DNA元件百科全書(shū)”計(jì)劃(Encyclopedia of DNA Elements, ENCODE)的完成,人們對(duì)基因的認(rèn)識(shí)又有了新的變化,并將遺傳學(xué)中基因的概念和理論應(yīng)用到了計(jì)算機(jī)、商業(yè)和信息技術(shù)等領(lǐng)域。

如今的21世紀(jì),隨著學(xué)科交叉研究的發(fā)展,一些科學(xué)研究者開(kāi)始利用物理化學(xué)工具來(lái)研究核酸結(jié)構(gòu),從分子水平上闡述遺傳現(xiàn)象背后的化學(xué)本質(zhì)。本文結(jié)合大量文獻(xiàn)綜述了基因的發(fā)展歷程以及現(xiàn)階段物理化學(xué)方法在遺傳學(xué)研究中的應(yīng)用,并展望了量子化學(xué)理論在遺傳學(xué)領(lǐng)域的應(yīng)用前景。

1 基因概念的歷史淵源

19世紀(jì),由于農(nóng)業(yè)生產(chǎn)發(fā)展的需要,人們開(kāi)始重視動(dòng)植物的遺傳變異現(xiàn)象并對(duì)這些現(xiàn)象進(jìn)行了系統(tǒng)研究,這為基因概念的產(chǎn)生創(chuàng)造了條件。1868年,Darwin C.受Hippocrates和Anaxagoras的生源說(shuō)影響提出了泛生論的假說(shuō),認(rèn)為生物體的細(xì)胞能產(chǎn)生自我繁殖的微粒,這些微粒可以匯聚于生殖細(xì)胞并決定后代的遺傳性狀,這種觀點(diǎn)缺乏實(shí)驗(yàn)論證,不過(guò)它充分肯定了生物體內(nèi)部存在特殊的物質(zhì)負(fù)責(zé)遺傳性狀的傳遞。之后,Weismann A.又在前人基礎(chǔ)上提出了種質(zhì)論(Germpiasm),認(rèn)為種質(zhì)是生物體的遺傳物質(zhì),它可能作為遺傳單位存在于染色體上,這對(duì)基因概念的形成奠定了理論基礎(chǔ)[1]。

2 基因的研究發(fā)展

2.1 基因概念的提出

在前人的遺傳學(xué)理論研究基礎(chǔ)上,Mendel G.J.第一個(gè)對(duì)遺傳現(xiàn)象做了系統(tǒng)的實(shí)驗(yàn)研究。通過(guò)豌豆雜交實(shí)驗(yàn),他認(rèn)為生物性狀是由“遺傳因子”來(lái)控制的,這些遺傳現(xiàn)象符合分離定律和自由組合定律。之后,Devries H、Correns C.和Tschermak E.分別證實(shí)了孟德?tīng)柕膶?shí)驗(yàn)結(jié)果,到1909年,丹麥的Johannsen W.L.首次用“基因”一詞表示遺傳因子。不過(guò),當(dāng)時(shí)的遺傳因子沒(méi)有涉及到基因的具體物質(zhì)概念,只是一個(gè)經(jīng)過(guò)統(tǒng)計(jì)學(xué)分析的理論概念。

2.2 基因?qū)W說(shuō)的創(chuàng)立

Mendel的遺傳因子學(xué)說(shuō)是宏觀水平上的發(fā)現(xiàn),其所提出的遺傳因子到底是否存在于細(xì)胞中需要進(jìn)行細(xì)胞水平上的研究。隨著當(dāng)時(shí)工業(yè)生產(chǎn)的發(fā)展,用以研究生物學(xué)實(shí)驗(yàn)的儀器設(shè)備有了極大的改進(jìn)。20世紀(jì)初,Boveri T.[2]和Sutton W.S.[3]各自在研究減數(shù)分裂時(shí),發(fā)現(xiàn)遺傳因子的行為與染色體行為呈平行關(guān)系,提出了基因就在染色體上的假說(shuō)。然后,1910年,Morgan T. H.等[4]用果蠅作材料,進(jìn)行了一系列雜交實(shí)驗(yàn),發(fā)現(xiàn)了伴性遺傳現(xiàn)象和基因連鎖互換定律,直接證實(shí)了基因在染色體上,建立了染色體遺傳理論。1926年,Morgan T.H.正式提出了基因?qū)W說(shuō),即“三位一體”的基因概念,基因首先是決定性狀的功能單位,能控制蛋白質(zhì)的表達(dá),決定一定的表型效應(yīng);其次是一個(gè)突變單位,可以發(fā)生在等位基因之間,表現(xiàn)出變異類(lèi)型;最后它是一個(gè)重組單位,只發(fā)生在基因之間,可以產(chǎn)生與親本不同的基因型[5]。這把染色體和基因聯(lián)系了起來(lái),說(shuō)明了基因具有物質(zhì)性,不過(guò),Morgan在其著作中并沒(méi)有涉及基因的本質(zhì)是什么以及基因的功能是如何發(fā)揮等問(wèn)題。

2.3 基因化學(xué)本質(zhì)的研究

對(duì)于基因的化學(xué)本質(zhì)和功能等問(wèn)題,早在1909年,英國(guó)Garrod A.E.就提出過(guò)基因產(chǎn)生酶的觀點(diǎn)。之后,1941年斯坦福大學(xué)Beadle G.和Tatum E.[6]在研究真菌過(guò)程中,提出了“一個(gè)基因一個(gè)酶”的假說(shuō),認(rèn)為一個(gè)基因控制一個(gè)酶的合成,基因通過(guò)酶控制生物的代謝途徑,這從生物化學(xué)角度闡述了基因的功能,不過(guò)這種基因的概念仍然沒(méi)有揭示基因的化學(xué)本質(zhì),只是解釋了基因發(fā)揮功能的途徑。到1944,Avery等通過(guò)肺炎雙球菌轉(zhuǎn)化實(shí)驗(yàn)證明了遺傳物質(zhì)的化學(xué)本質(zhì)是DNA,然后,1956年,美國(guó)的Fraenkel又通過(guò)煙草花葉病毒實(shí)驗(yàn)證明了RNA也可以作為遺傳物質(zhì)進(jìn)行傳遞[7]。

2.4 基因功能的研究

1953年,Watson J.D.和Crick F.H.C.[8]提出了DNA的雙螺旋結(jié)構(gòu),人們開(kāi)始從分子水平上認(rèn)識(shí)基因的本質(zhì),即基因是DNA分子中含有特定遺傳信息的一段核苷酸序列,是遺傳物質(zhì)的最小功能單位[9],從此以后,人們對(duì)基因功能的認(rèn)識(shí)開(kāi)始有了深入的了解。1955年,Benzer S.[10]通過(guò)T4噬菌體感染大腸桿菌的互補(bǔ)實(shí)驗(yàn)提出了順?lè)醋訉W(xué)說(shuō),認(rèn)為基因就是順?lè)醋樱匆粋€(gè)遺傳功能單位,一個(gè)順?lè)醋記Q定一條多肽鏈,它并不是一個(gè)突變單位和交換單位。一個(gè)順?lè)醋涌梢园幌盗型蛔冏樱蛔冏邮荄NA中構(gòu)成的一個(gè)或若干個(gè)核苷酸,由于基因內(nèi)的各個(gè)突變子之間有一定距離,所以突變子彼此之間能發(fā)生重組,重組頻率與突變子之間的距離成正比[11]。

20世紀(jì)60年代之前,人們已經(jīng)認(rèn)識(shí)到基因是有著精細(xì)結(jié)構(gòu)的DNA分子,其結(jié)構(gòu)可以繼續(xù)分割,不過(guò),當(dāng)時(shí)對(duì)于基因功能表達(dá)及其具體作用等問(wèn)題的研究依然局限于傳統(tǒng)的“一個(gè)基因一個(gè)酶”的學(xué)說(shuō)。1961年,法國(guó)遺傳學(xué)家Jacob F.和Monod J.L.[12]根據(jù)對(duì)大腸桿菌的試驗(yàn),提出了大腸桿菌操縱子模型,認(rèn)為DNA的不同區(qū)域存在一個(gè)調(diào)節(jié)基因和一個(gè)操縱子,操縱子模型包括若干結(jié)構(gòu)基因、操縱基因和啟動(dòng)基因。這一模型進(jìn)一步說(shuō)明了基因是可分的,通過(guò)基因間的密切協(xié)作,細(xì)胞才能表現(xiàn)出獨(dú)特的功能[13]。此后,隨著DNA重組技術(shù)和DNA測(cè)序技術(shù)的發(fā)展,人們對(duì)基因的研究更加深入,發(fā)現(xiàn)了許多基因的其他功能和特點(diǎn),極大地完善了人們對(duì)生物體各種遺傳現(xiàn)象的認(rèn)識(shí)。

2.5 基因概念的新發(fā)展

20世紀(jì)70年代以后,隨著分子生物學(xué)技術(shù)的飛速發(fā)展,人們對(duì)基因的結(jié)構(gòu)和功能上的特征有了更多的認(rèn)識(shí),其中比較重要的發(fā)現(xiàn)有假基因、重疊基因、跳躍基因、斷裂基因、反轉(zhuǎn)錄基因、印記基因等。結(jié)合基因的這些新發(fā)現(xiàn),現(xiàn)今人們認(rèn)識(shí)基因有以下幾種特點(diǎn)[5]:(1)基因不都是離散的,因?yàn)橛兄丿B基因;(2)基因不一定是連續(xù)的,如斷裂基因;(3)基因可以移動(dòng),其位置可以改變,如跳躍基因;(4)基因不是全能的結(jié)構(gòu)單位,有很多順式作用元件影響轉(zhuǎn)錄或剪接;(5)基因也不是簡(jiǎn)單的功能單位,因?yàn)榛蚩梢酝ㄟ^(guò)順式或反式剪接,產(chǎn)生多種蛋白質(zhì)。那么,到底應(yīng)該怎樣給一個(gè)基因準(zhǔn)確定義呢?近年來(lái),有很多人對(duì)此提出了看法。

Gerstein等[14]提出,基因的定義應(yīng)該和原來(lái)的定義有兼容,建立在已有的生物術(shù)語(yǔ)基礎(chǔ)之上。他們認(rèn)為,基因是基因組序列的聯(lián)合體,這些序列可以編碼具有潛在重疊功能的產(chǎn)品(蛋白質(zhì)或RNA),基因與其調(diào)節(jié)序列是多對(duì)多關(guān)系。在此基礎(chǔ)上,Pesole[15]則認(rèn)為基因是一個(gè)離散的基因組區(qū)域,其轉(zhuǎn)錄可以被一個(gè)或多個(gè)啟動(dòng)子和遠(yuǎn)端調(diào)節(jié)成分調(diào)控,并含有合成功能蛋白質(zhì)或非編碼RNA的信息。基因在最終功能產(chǎn)物上有共同性質(zhì),這個(gè)定義主要針對(duì)真核生物基因組,強(qiáng)調(diào)每個(gè)基因都分布于基因組的連續(xù)區(qū)域,基因序列包含5′UTR和3′UTR。此外,還有學(xué)者從計(jì)算機(jī)角度對(duì)基因的定義做了描述,他們把基因組比喻為一個(gè)生命體的大的操作系統(tǒng),而基因就是其中的一個(gè)子程序。總之,隨著當(dāng)今科技水平的發(fā)展,人們通過(guò)對(duì)DNA、RNA和蛋白質(zhì)新功能的研究,發(fā)現(xiàn)基因并不是以前想得那么簡(jiǎn)單,其概念、功能和特征是隨著一些特殊的生命遺傳現(xiàn)象可以改變的。

如阮病毒的發(fā)現(xiàn),朊病毒是一種只有蛋白質(zhì)而沒(méi)有核酸的病毒,就之前生物學(xué)家對(duì)基因的概念而言,朊病毒的復(fù)制并非以核酸為模板,而是以蛋白質(zhì)為模板,這又重現(xiàn)了20世紀(jì)遺傳物質(zhì)本質(zhì)問(wèn)題的爭(zhēng)議,是現(xiàn)階段基因概念的新挑戰(zhàn)。此外,2006年,《自然》雜志在New Feature欄目上刊登了“什么是基因?”一文,這篇文章結(jié)合最近的研究成果對(duì)基因的概念做了新的詮釋?zhuān)恍┭芯堪l(fā)現(xiàn),RNA不是被動(dòng)的將基因信息傳遞下去,而是主動(dòng)地調(diào)控細(xì)胞的活動(dòng),有的RNA鏈不是傳統(tǒng)認(rèn)為的只由DNA的一條鏈轉(zhuǎn)錄,而是由兩條鏈轉(zhuǎn)錄得來(lái),還有一些RNA可以通過(guò)某種途徑使正常基因沉默,在必要時(shí)還會(huì)作為模板糾正某些異常基因,跨世代地?cái)y帶生物體遺傳信息[16]。這些研究發(fā)現(xiàn)加深了我們對(duì)RNA的認(rèn)識(shí),深化了我們對(duì)生物體遺傳現(xiàn)象的了解。又20世紀(jì)90年代,美籍華人牛滿江教授又發(fā)現(xiàn)了“外基因”,即一些生物體細(xì)胞質(zhì)中mtRNA能激活一些特定基因,使生物體表達(dá)特定的蛋白質(zhì),還有,2008年《自然》雜志上報(bào)告,美國(guó)科學(xué)家確認(rèn)了一種可導(dǎo)致乳腺癌轉(zhuǎn)移的超級(jí)基因,這種基因可控制腫瘤細(xì)胞中其他基因的表達(dá),它的表達(dá)與癌癥發(fā)生有密切的聯(lián)系[17]。

總之,隨著科學(xué)的不斷發(fā)展,人們對(duì)于生物遺傳現(xiàn)象的認(rèn)識(shí)越來(lái)越深入,基因的概念也隨著生物學(xué)的發(fā)展不斷變化和完善。由于其他非生命領(lǐng)域的研究對(duì)象顯示出了生命力及與生物基因相似的特征,現(xiàn)今,經(jīng)濟(jì)領(lǐng)域和計(jì)算機(jī)領(lǐng)域中又出現(xiàn)了企業(yè)基因[18]、產(chǎn)品基因[19]、數(shù)據(jù)基因[20]等新的定義,基因概念的基本理論已經(jīng)發(fā)展到更多學(xué)科中了,對(duì)基因本質(zhì)和特征的研究越來(lái)越有必要。

3 量子化學(xué)作為研究核酸方法的應(yīng)用

當(dāng)前,遺傳學(xué)的研究已經(jīng)發(fā)展到了分子水平,然而對(duì)于生物遺傳現(xiàn)象中一些酶、核酸、激素等活性物質(zhì)的構(gòu)象、生物活性和其具體作用機(jī)制依然存在爭(zhēng)議。生物系統(tǒng)研究的最大難題是生物分子的復(fù)雜性,常規(guī)的實(shí)驗(yàn)方法只能得到實(shí)驗(yàn)現(xiàn)象的宏觀方面解釋?zhuān)荒軓奈⒂^方面對(duì)實(shí)驗(yàn)現(xiàn)象的化學(xué)本質(zhì)做出解釋。目前有一些研究者將物理化學(xué)方法應(yīng)用到了生命科學(xué)領(lǐng)域,建立了從理論分析到實(shí)驗(yàn)優(yōu)化的方法模式,他們根據(jù)實(shí)際體系在計(jì)算機(jī)上進(jìn)行實(shí)驗(yàn),通過(guò)比較模擬結(jié)果和實(shí)驗(yàn)數(shù)據(jù)檢驗(yàn)理論模型的準(zhǔn)確性,并在此基礎(chǔ)上模擬生物大分子的結(jié)構(gòu)、性質(zhì)和反應(yīng)過(guò)程。

隨著計(jì)算機(jī)技術(shù)和物理化學(xué)理論的發(fā)展,以及X射線、NMR等技術(shù)的應(yīng)用,人們可以利用一些物理化學(xué)工具在計(jì)算機(jī)上進(jìn)行分子模擬,以此來(lái)模擬DNA、RNA和蛋白質(zhì)的結(jié)構(gòu),預(yù)測(cè)蛋白質(zhì)與核酸的功能和性質(zhì)。而且,隨著計(jì)算方法的改進(jìn),高度變化的核酸體系的精確分子模擬已成為可能,依賴強(qiáng)大的計(jì)算機(jī)就能模擬一些更復(fù)雜的反應(yīng),如DNA、RNA和蛋白質(zhì)的催化及折疊等[21]。

其中應(yīng)用比較廣泛的物理化學(xué)工具就是量子化學(xué)方法,量子化學(xué)方法是應(yīng)用量子化學(xué)基本原理和方法來(lái)研究化學(xué)體系的結(jié)構(gòu)和化學(xué)反應(yīng)性能的科學(xué),其基本理論主要有價(jià)鍵理論(VB)、分子軌道理論(MO)、密度泛函理論(DFT),基本的計(jì)算方法有從頭算方法(ab initio)、半經(jīng)驗(yàn)方法(semi-empirical method)、密度泛函方法(Density Functional Theory)[22]。量子化學(xué)的原理和方法在物理化學(xué)、藥學(xué)計(jì)算和生命科學(xué)領(lǐng)域有廣泛的應(yīng)用,可以很好地分析分子間相互作用的機(jī)理,解釋實(shí)驗(yàn)中一些宏觀現(xiàn)象的物理化學(xué)本質(zhì)。如李梅杰[23]利用量子化學(xué)方法中的高精度組合從頭算方法(ONIOM-G3B3)研究了核酸自由基性質(zhì)和損傷機(jī)理,很好地解釋了生命過(guò)程中由于自由基和電子轉(zhuǎn)移導(dǎo)致DNA的斷鏈損傷而引起的衰老、癌癥、神經(jīng)紊亂等疾病的發(fā)生。又如2002年,Starikov E.B.[24]總結(jié)了核酸中量子化學(xué)方法的應(yīng)用,闡述了核酸中電荷轉(zhuǎn)移過(guò)程的量子化學(xué)描述及其化學(xué)機(jī)理,并詳細(xì)地討論了不同量子化學(xué)方法在研究核酸電子構(gòu)型中的優(yōu)缺點(diǎn)。此外,于芳[25]運(yùn)用量子化學(xué)工具對(duì)胞嘧啶與丙烯酰胺組成的分子體系進(jìn)行了計(jì)算,以此來(lái)模擬核酸與蛋白質(zhì)相互作用的反應(yīng)過(guò)程,分析了DNA與蛋白質(zhì)的作用形式。

對(duì)于利用量子化學(xué)方法研究蛋白質(zhì)的應(yīng)用,國(guó)外在這方面做得比較深入。如紐約州立大學(xué)石溪分校Simmerling C.等[26]應(yīng)用量子化學(xué)方法研究了一種小分子量蛋白質(zhì),僅有20個(gè)色氨酸構(gòu)成,準(zhǔn)確地預(yù)測(cè)了蛋白質(zhì)三維結(jié)構(gòu)的折疊過(guò)程。又如Berriz和Shakhnovich[27]模擬了小的三螺旋束蛋白的折疊,Daggett和Fersht[28]模擬了小的單結(jié)構(gòu)域蛋白的動(dòng)力學(xué)折疊.還有Akira Shoji等[29]采用密度泛函理論方法優(yōu)化了右手α-螺旋的PLA(聚L-丙氨酸)分子(如圖1所示,即H-Ala18-OH分子),分析了αR-螺旋的PLA形成的機(jī)制,獲得優(yōu)化的αR-螺旋H-Ala18-OH構(gòu)型外側(cè)的1H、13C、15N、17O原子的化學(xué)位移與用高分辨率固相NMR檢測(cè)的相同。

4 展望

近年來(lái),國(guó)內(nèi)外量子化學(xué)在分子生物學(xué)中的應(yīng)用日趨廣泛,如利用量子化學(xué)方法研究納米微粒促進(jìn)靶向給藥、純化核酸以及處理廢氣等技術(shù)的發(fā)展;應(yīng)用量子化學(xué)方法優(yōu)化生物活性分子結(jié)構(gòu),研發(fā)新型抗疾病藥物;采用分子模擬的量子化學(xué)計(jì)算方法探究激素與受體以及其他活性分子與核酸的作用機(jī)理等等,很大程度上促進(jìn)了分子生物學(xué)和醫(yī)學(xué)的發(fā)展。從目前所作的科學(xué)研究看,量子化學(xué)完全可以作為遺傳學(xué)工具來(lái)研究生物體遺傳現(xiàn)象背后的化學(xué)本質(zhì),其在遺傳學(xué)的研究中有廣闊的應(yīng)用前景。

參考文獻(xiàn)

[1] 光曉元.基因概念的歷史淵源及其歷史發(fā)展[J].安慶師范學(xué)院學(xué)報(bào),2002,8(4):95-97.

[2] Boveri T.ber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns[J]. Verh Phys.Med Ges Würzburg,1902, 35:67-90.

[3] Sutton W S.The chromosomes in heredity[J].Bio Bull,1903,4:231-251.

[4] Morgan T H.Sex-limited inheritance in Drosophila[J].Science,1910,32(812):120-122.

[5] 謝兆輝.基因概念的演繹[J].遺傳,2010,32(5):449-454.

[6] Beadle G W,Tatum E L.Genetic control of biochemical reactions in neurospora[J].Proc Natl Acad Sci USA, 1941,27(11):499-506.

[7] 高汝勇.基因概念的發(fā)展歷程[J].科技風(fēng),2009(11):128-128.

[8] Watson J D,Crick H F C.A structure for deoxyribosenucleic acid[J].Nature,1953:171,737.

[9] 趙亞華.基礎(chǔ)分子生物學(xué)教程.2版.北京:科學(xué)出版社,2007,7:1-10.

[10] Benzer S.Fine structre of a genetic region in bacteriophage[J].Proc Natl Acad Sci USA,1955,41(6):344-354.

[11] 張勇.基因概念之演變[J].生物學(xué)通報(bào),2002,37(10):52,54.

[12] Jacob F,Monod J.Genetic vegulator ymechanisms in the synthesis of proteins[J].J.Mol.Biol,1961(3):318.

[13] 劉元,陳國(guó)梁,梁凱.基因概念的演變[J].延安大學(xué)學(xué)報(bào),2005,24(4):80-83.

[14] Gerstein M B,Bruce C,Rozowsky J S,et al.What is a gene,post-ENCODE?History and updated definition[J].Genome Res,2007,17(6):669-681.

[15] 施江,辛莉,郭永新,等.現(xiàn)代生物學(xué)基因研究進(jìn)展—— 從遺傳因子到超級(jí)基因(2)[J].生物學(xué)通報(bào),2009,44(4):4-7.

[16] 唐捷.基因是什么[J].生物化學(xué)與生物物理進(jìn)展,2006,33(7):607-608.

[17] 歐陽(yáng)芳平,徐慧,郭愛(ài)敏,等.分子模擬方法及其在分子生物學(xué)中的應(yīng)用[J].生物信息學(xué),2005(1):33-36.

[18] 許曉明,戴建華.企業(yè)基因理論的演化及其順?lè)醋酉到y(tǒng)新模型的構(gòu)建[J].上海管理科學(xué),2008,30(2):86-90.

[19] 楊金勇,黃克正,尚勇,等.產(chǎn)品基因研究綜述[J].機(jī)械設(shè)計(jì),2007,24(4):1-4.

[20] 奚建清,湯德佑,郭玉彬.數(shù)據(jù)基因:數(shù)據(jù)的遺傳信息載體[J].計(jì)算機(jī)工程,2006,32(17):7-9.

[21] Pesole G.What is a gene?An updated operational definition[J].Gene,2008,417(1-2):1-4.

[22] 趙艷麗,許炎,李遙潔,等.量子化學(xué)在金屬配合物中的應(yīng)用進(jìn)展[J].廣東化工,2010,37(9):75-76.

[23] 李梅杰.核酸自由基性質(zhì)和損傷機(jī)理的量子化學(xué)研究[D].合肥:中國(guó)科學(xué)技術(shù)大學(xué)化學(xué)與材料科學(xué)學(xué)院,2007.

[24] Starikov E B.Quantum chemistry of nucleic acids:how it could help and when it is necessary[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2002,3:147-164.

[25] 于芳.酰胺類(lèi)化合物與DNA堿基相互作用的理論研究[M].江蘇:江南大學(xué)應(yīng)用化學(xué)系,2009.

[26] Simmerling C,Strockbine & Roitberg A E.All-atom structure prediction and folding simulations of a stable protein[J].Journal of the American Chemical Society,2002,124:11258-11259.

[27] Berriz G F,Shakhnovich E I. Characterization of the folding kinetics of three-helix bundle protein via a minimalist Langevin model[J].Journal of Molecular Biology,2001,310:673-685.

量子計(jì)算的定義范文第5篇

【關(guān)鍵詞】量子;通信;技術(shù);發(fā)展

對(duì)量子信息進(jìn)行研究是將量子力學(xué)作為研究基礎(chǔ),根據(jù)量子并行、糾纏以及不可克隆特性,探索量子編碼、計(jì)算、傳輸?shù)目赡苄裕孕峦緩健⑺悸贰⒏拍畲蚱圃械男酒瑯O限。從本質(zhì)來(lái)說(shuō):量子信息是在量子物理觀念上引發(fā)的效應(yīng)。它的優(yōu)勢(shì)完全來(lái)源于量子并行,量子糾纏中的相干疊加為量子通訊提供了依據(jù),量子密碼更多的取決于波包塌縮。理論上,量子通信能夠?qū)崿F(xiàn)通信過(guò)程,最初是通過(guò)光纖實(shí)現(xiàn)的,由于光纖會(huì)受到自身與地理?xiàng)l件限制,不能實(shí)現(xiàn)遠(yuǎn)距離通信,所以不利于全球化。到1993年,隱形傳輸方式被提出,通過(guò)創(chuàng)建脫離實(shí)物的量子通信,用量子態(tài)進(jìn)行信息傳輸,這就是原則上不能破譯的技術(shù)。但是,我們應(yīng)該看到,受環(huán)境噪聲影響,量子糾纏會(huì)隨著傳輸距離的拉長(zhǎng)效果變差。

一、量子通信技術(shù)

(一)量子通信定義

到目前為止,量子通信依然沒(méi)有準(zhǔn)確的定義。從物力角度來(lái)看,它可以被理解為物力權(quán)限下,通過(guò)量子效應(yīng)進(jìn)行性能較高的通信;從信息學(xué)來(lái)看,量子通信是在量子力學(xué)原理以及量子隱形傳輸中的特有屬性,或者利用量子測(cè)量完成信息傳輸?shù)倪^(guò)程。

從量子基本理論來(lái)看,量子態(tài)是質(zhì)子、中子、原子等粒子的具體狀態(tài),可以代表粒子旋轉(zhuǎn)、能量、磁場(chǎng)和物理特性,它包含量子測(cè)不準(zhǔn)原理和量子糾纏,同時(shí)也是現(xiàn)代物理學(xué)的重點(diǎn)。量子糾纏是來(lái)源一致的一對(duì)微觀粒子在量子力學(xué)中的糾纏關(guān)系,同時(shí)這也是通過(guò)量子進(jìn)行密碼傳遞的基礎(chǔ)。Heisenberg測(cè)不準(zhǔn)原理作為力學(xué)基本原理,是同一時(shí)刻用相同精度對(duì)量子動(dòng)量以及位置的測(cè)量,但是只能精確測(cè)定其中的一樣結(jié)果。

(二)量子通信原理

量子通信素來(lái)具有速度快、容量大、保密性好等特征,它的過(guò)程就是量子力學(xué)原理的展現(xiàn)。從最典型的通信系統(tǒng)來(lái)說(shuō)具體包含:量子態(tài)、量子測(cè)量容器與通道,擁有量子效應(yīng)的有:原子、電子、光子等,它們都可以作為量子通信的信號(hào)。在這過(guò)程中,由于光信號(hào)擁有一定的傳輸性,所以常說(shuō)的量子通信都是量子光通信。分發(fā)單光子作為實(shí)施量子通信空間的依據(jù),利用空間技術(shù)能夠?qū)崿F(xiàn)空間量子的全球化通信,并且克服空間鏈路造成的距離局限。

利用糾纏量子中的隱形量子傳輸技術(shù)作為未來(lái)量子通信的核心,它的工作原理是:利用量子力學(xué),由兩個(gè)光子構(gòu)成糾纏光子,不管它們?cè)谟钪嬷芯嚯x多遠(yuǎn),都不能分割狀態(tài)。如果只是單獨(dú)測(cè)量一個(gè)光子情況,可能會(huì)得到完全隨機(jī)的測(cè)量結(jié)果;如果利用海森堡的測(cè)不準(zhǔn)原理進(jìn)行測(cè)量,只要測(cè)量一個(gè)光子狀態(tài),縱使它已經(jīng)發(fā)生變化,另一個(gè)光子也會(huì)出現(xiàn)類(lèi)似的變化,也就是塌縮。根據(jù)這一研究成果,Alice利用隨機(jī)比特,隨機(jī)轉(zhuǎn)換已有的量子傳輸狀態(tài),在多次傳輸中,接受者利用量子信道接收;在對(duì)每個(gè)光子進(jìn)行測(cè)量時(shí),同時(shí)也隨機(jī)改變了自己的基,一旦兩人的基一樣,一對(duì)互補(bǔ)隨機(jī)數(shù)也就產(chǎn)生。如果此時(shí)竊聽(tīng)者竊聽(tīng),就會(huì)破壞糾纏光子對(duì),Alice與Bob也就發(fā)覺(jué),所以運(yùn)用這種方式進(jìn)行通信是安全的。

(三)量子密碼技術(shù)

從Heisenberg測(cè)不準(zhǔn)原理我們可以知道,竊聽(tīng)不可能得到有效信息,與此同時(shí),竊聽(tīng)量子信號(hào)也將會(huì)留下痕跡,讓通信方察覺(jué)。密碼技術(shù)通過(guò)這一原理判別是否存在有人竊取密碼信息,保障密碼安全。而密鑰分配的基本原理則來(lái)源于偏振,在任意時(shí)刻,光子的偏振方向都擁有一定的隨機(jī)性,所以需要在糾纏光子間分設(shè)偏振片。如果光子偏振片與偏振方向夾角較小時(shí),通過(guò)濾光器偏振的幾率很大,反之偏小。尤其是夾角為90度時(shí),概率為0;夾角為45度時(shí),概率是0.5,夾角是0度時(shí),概率就是1;然后利用公開(kāi)渠道告訴對(duì)方旋轉(zhuǎn)方式,將檢測(cè)到的光子標(biāo)記為1,沒(méi)有檢測(cè)到的填寫(xiě)0,而雙方都能記錄的二進(jìn)制數(shù)列就是密碼。對(duì)于半路監(jiān)聽(tīng)的情況,在設(shè)置偏振片的同時(shí),偏振方向的改變,這樣就會(huì)讓接受者與發(fā)送者數(shù)列出現(xiàn)差距。

(四)量子通信的安全性

從典型的數(shù)字通信來(lái)說(shuō):對(duì)信息逐比特,并且完全加密保護(hù),這才是實(shí)質(zhì)上的安全通信。但是它不能完全保障信息安全,在長(zhǎng)度有限的密文理論中,經(jīng)不住窮舉法影響。同時(shí),偽隨機(jī)碼的周期性,在重復(fù)使用密鑰時(shí),理論上能夠被解碼,只是周期越長(zhǎng),解碼破譯難度就會(huì)越大。如果將長(zhǎng)度有限的隨機(jī)碼視為密鑰,長(zhǎng)期使用雖然也會(huì)具有周期特征,但是不能確保安全性。

從傳統(tǒng)的通信保密系統(tǒng)來(lái)看,使用的是線路加密與終端加密整合的方式對(duì)其保護(hù)。電話保密網(wǎng),是在話音終端上利用信息通信進(jìn)行加密保護(hù),而工作密鑰則是偽隨機(jī)碼。

二、量子通信應(yīng)用與發(fā)展

和傳統(tǒng)通信相比,量子通信具有很多優(yōu)勢(shì),它具有良好的抗干擾能力,并且不需要傳統(tǒng)信道,量子密碼安全性很高,一般不能被破譯,線路時(shí)延接近0,所以具有很快的傳輸速度。目前,量子通信已經(jīng)引起很多軍方和國(guó)家政府的關(guān)注。因?yàn)樗芙⑵馃o(wú)法破譯的系統(tǒng),所以一直是日本、歐盟、美國(guó)科研機(jī)構(gòu)發(fā)展與研究的內(nèi)容。

在城域通信分發(fā)與生成系統(tǒng)中,通過(guò)互聯(lián)量子路由器,不僅能為任意量子密碼機(jī)構(gòu)成量子密碼,還能為成對(duì)通信保密機(jī)利用,它既能用于逐比特加密,也能非實(shí)時(shí)應(yīng)用。在嚴(yán)格的專(zhuān)網(wǎng)安全通信中,通過(guò)以量子分發(fā)系統(tǒng)和密鑰為支撐,在城域范疇,任何兩個(gè)用戶都能實(shí)現(xiàn)逐比特密鑰量子加密通信,最后形成安全性有保障的通信系統(tǒng)。在廣域高的通信網(wǎng)絡(luò)中,受傳輸信道中的長(zhǎng)度限制,它不可能直接創(chuàng)建出廣域的通信網(wǎng)絡(luò)。如果分段利用量子密鑰進(jìn)行實(shí)時(shí)加密,就能形成安全級(jí)別較高的廣域通信。它的缺點(diǎn)是,不能全程端與端的加密,加密節(jié)點(diǎn)信息需要落地,所以存在安全隱患。目前,隨著空間光信道量子通信的成熟,在天基平臺(tái)建立好后,就能實(shí)施范圍覆蓋,從而拓展量子信道傳輸。在這過(guò)程中,一旦量子中繼與存儲(chǔ)取得突破,就能進(jìn)一步拉長(zhǎng)量子信道的輸送距離,并且運(yùn)用到更寬的領(lǐng)域。例如:在潛安全系統(tǒng)中,深海潛艇與岸基指揮一直是公認(rèn)的世界難題,只有運(yùn)用甚長(zhǎng)波進(jìn)行系統(tǒng)通信,才能實(shí)現(xiàn)幾百米水下通信,如果只是使用傳統(tǒng)的加密方式,很難保障安全性,而利用量子隱形和存儲(chǔ)將成為開(kāi)辟潛通的新途徑。

三、結(jié)束語(yǔ)

量子技術(shù)的應(yīng)用與發(fā)展,作為現(xiàn)代科學(xué)與物理學(xué)的進(jìn)步標(biāo)志之一,它對(duì)人類(lèi)發(fā)展以及科學(xué)建設(shè)都具有重要作用。因此,在實(shí)際工作中,必須充分利用通信技術(shù),整合國(guó)內(nèi)外發(fā)展經(jīng)驗(yàn),從各方面推進(jìn)量子通信技術(shù)發(fā)展。

參考文獻(xiàn)

[1]徐啟建,金鑫,徐曉帆等.量子通信技術(shù)發(fā)展現(xiàn)狀及應(yīng)用前景分析[J].中國(guó)電子科學(xué)研究院學(xué)報(bào),2009,4(5):491-497.

主站蜘蛛池模板: 博客| 涟源市| 三台县| 广灵县| 五指山市| 罗田县| 涟水县| 天津市| 湖口县| 邢台市| 固原市| 响水县| 曲松县| 阳原县| 四川省| 汾西县| 永和县| 田阳县| 海南省| 高州市| 苍南县| 阿拉善右旗| 九江县| 福建省| 凤庆县| 平罗县| 峡江县| 平昌县| 安康市| 沁阳市| 桐庐县| 尼勒克县| 江城| 洱源县| 铜陵市| 峨边| 瑞金市| 永福县| 平凉市| 本溪| 东城区|