前言:本站為你精心整理了小區播種機控制系統論文范文,希望能為你的創作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。
1硬件設計
1.1CPU選型
根據永磁同步電動機伺服控制系統的特點,常采用DSP、ARM和FPGA作為CPU實現PMSM伺服控制。本文采用TI公司32位電機控制專用DSP芯片TMS320F28335作為CPU。TMS320F28335時鐘頻率可達150MHz;具有256KFLASH,16KSRAM,便于系統的擴展;具有6路對稱PWM輸出,輸出位數可達16位;具有16路12位高速A/D轉換通道,轉換時間可達80ns;具有獨立的浮點核運算單元,計算正余弦函數僅需37個時鐘周期。因此,針對反電勢為正弦波的永磁同步電動機的控制,TMS320F28335具有其他CPU無可比擬的優勢。
1.2信號隔離模塊
小區播種機工況復雜,電流變換范圍寬。為減小永磁同步電動機運轉過程中對A/D轉換通道及CPU的影響,增強系統工作穩定性,提高控制精度,CPU與永磁同步電動機隔離供電。傳統的光電耦合器,帶寬較窄,在上升沿及下降沿時波形容易發生畸變,并且光電耦合器屬于易損器件。本文中,采用數字隔離器對DSP的PWM模塊與三相逆變器部分進行隔離,所采用型號為TI公司ISO7140。ISO7140最大傳輸速率可達50Mbps,每個隔離通道都有一個絕緣隔柵分開的邏輯輸入和輸出緩沖器,并在輸入端上有集成濾波器,可有效防止PWM總線或PMSM供電部分的噪聲電流進入CPU供電系統,穩定性更高DGND為CPU供電系統電源數字地,MGND為三相逆變器電源地,HIN、LIN、SD、FLT-CLR為三相逆變器中,MOSFET驅動芯片IR2131引腳。
1.3三相逆變器
小區播種機排種器伺服電機的工作電流一般為1~3A。為降低成本,提高功率放大模塊的穩定性,采用IR公司MOSFET驅動芯片IR2131驅動分離MOS-FET實現永磁同步電動機的全橋驅動,功率放大部分電路原理圖。MOSFET型號為IRF3910,續流二極管型號為30WQ06F。0.22Ω電阻為母線過流采樣電阻,采樣電壓經兩個10kΩ分壓后,送往ITRIP引腳。當ITRIP引腳電平高于0.5V時,將觸發剎車功能,封鎖IR2131輸出,同時將FAULT引腳置高,過流指示燈亮。FLT-CLR引腳可清除FAULT引腳高電平,解除IR2131輸出封鎖。SD引腳為強制剎車觸發引腳,當其為高電平時,強制觸發IR2131剎車功能。
1.4電流采樣
根據系統的工作電流范圍,采用霍尼韋爾電流互感器CSNE150-100對PMSM母線電流采樣。采樣電阻Rs將CSNE150-100輸出的電流信號轉化為電壓信號。R1、R2、C1、C2、Rf與差分運算放大器AMP1構成MFB型二階有源低通濾波器,截止頻率為之所以采用兩級運放構成放大與濾波電路是因為反向比例運算放大電路具有更高的輸入阻抗及更低的輸出阻抗。同時,濾波與放大電路分離設計更利于電路參數的計算。
2軟件設計
實現永磁同步電動機速度控制,一般采用兩環控制結構,內環為電流/轉矩環,外環為速度環。電流/轉矩常采用的控制方法為矢量控制。矢量控制利用abc-dq變換將三相旋轉坐標系轉換為兩相靜止坐標系,采用類似于直流電機的控制方法對PMSM進行控制。矢量控制能夠取得平穩的電磁轉矩,但是需要復雜的坐標變換。本文采用相電流直接控制方法實現PMSM電流/轉矩環的控制,避免了復雜的坐標變換。
3試驗驗證
為驗證改進后的小區播種機排種器的控制效果。采用了類似文獻的試驗驗證方法。固定播種機作業距離為3m。理論上,當播種機作業結束時,排種器應旋轉360°。試驗中,分別設定播種器的速度為2.5、3.5、4.0km/h和變速進行作業。變速作業時,速度范圍為2.5~4.0km/h。每個速度形式分別進行5組試驗。作業結束時,記錄排種器上所裝備的2500線光電編碼器的輸出脈沖個數,并取其5組試驗的平均值,作為評估排種器控制精度的依據。
4結論
設計了采用永磁同步電動機作為執行機構的小區播種機排種器伺服控制系統。采用永磁同步電動機代替步進電機,體積更小。采用相電流直接控制法,無需經過復雜的數學變換即可獲得平穩的電磁轉矩,簡化了控制結構。試驗結果表明:基于永磁同步電動機的控制系統避免了步進電機的失步問題,勻速時控制精度更高;變速時,控制誤差雖然有所增大,但是仍能滿足控制要求。所設計的控制系統質量小,價格低,控制簡單,控制精度高,具有推廣應用價值。
作者:張健龔麗農單位:青島農業大學