最近中文字幕2018免费版2019,久久国产劲暴∨内射新川,久久久午夜精品福利内容,日韩视频 中文字幕 视频一区

首頁 > 文章中心 > 數學建模分析

數學建模分析

前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇數學建模分析范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。

數學建模分析

數學建模分析范文第1篇

(1)學會提出問題和明確探究方向;

(2)體驗數學活動的過程;

(3)培養創新精神和應用能力。

其中,創新意識與實踐能力是新課標中最突出的特點之一,數學學習不僅要在數學基礎知識,基本技能和思維能力,運算能力,空間想象能力等方面得到訓練和提高,而且在應用數學分析和解決實際問題的能力方面同樣需要得到訓練和提高,而培養學生的分析和解決實際問題的能力僅僅靠課堂教學是不夠的,必須要有實踐、培養學生的創新意識和實踐能力是數學教學的一個重要目的和一條基本原則,要使學生學會提出問題并明確探究方向,能夠運用已有的知識進行交流,并將實際問題抽象為數學問題,就必須建立數學模型,從而形成比較完整的數學知識結構。

數學模型是數學知識與數學應用的橋梁,研究和學習數學模型,能幫助學生探索數學的應用,產生對數學學習的興趣,培養學生的創新意識和實踐能力,加強數學建模教學與學習對學生的智力開發具有深遠的意義。

數學建模活動是一種使學生在探究性活動中受到數學教育的學習方式,是應用已有的數學知識解決問題的教與學的雙邊活動,是學生圍繞某個數學問題,自主探究、學習的過程。新的高中數學課程標準要求把數學探究、數學建模的思想以不同的形式滲透在各模塊和專題內容之中,突出強調建立科學探究的學習方式,讓學生通過探究活動來學習數學知識和方法,增進對數學的理解,體驗探究的樂趣。但是《新課標》雖然提到了“數學模型”這個概念,但在操作層面上的指導意見并不多。如何理解課標的上述理念?怎樣開展高中數學建模活動?

數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。通過教學使學生了解利用數學理論和方法去分折和解決問題的全過程,提高他們分折問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力。數學建模以學生為主,教師利用一些事先設計好的問題,引導學生主動查閱文獻資料和學習新知識,鼓勵學生積極開展討論和辯論,主動探索解決之法。教學過程的重點是創造一個環境去誘導學生的學習欲望、培養他們的自學能力,增強他們的數學素質和創新能力,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。

一、在教學中傳授學生初步的數學建模知識

中學數學建模的目的旨在培養學生的數學應用意識,掌握數學建模的方法,為將來的學習、工作打下堅實的基礎。在教學時將數學建模中最基本的過程教給學生:利用現行的數學教材,向學生介紹一些常用的、典型的數學模型。如函數模型、不等式模型、數列模型、幾何模型、三角模型、方程模型等。教師應研究在各個教學章節中可引入哪些數學基本模型問題,如儲蓄問題、信用貸款問題可結合在數列教學中。教師可以通過教材中一些不大復雜的應用問題,帶著學生一起來完成數學化的過程,給學生一些數學應用和數學建模的初步體驗。

二、培養學生的數學應用意識,增強數學建模意識

在數學教學和對學生數學學習的指導中,介紹知識的來龍去脈時多與實際生活相聯系。例如,日常生活中存在著“不同形式的等量關系和不等量關系”以及“變量間的函數對應關系”、“變相間的非確切的相關關系”、“事物發生的可預測性,可能性大小”等,這些正是數學中引入“方程”、“不等式”、“函數”“變量間的線性相關”、“概率”的實際背景。另外鍛煉學生學會運用數學語言描述周圍世界出現的數學現象。數學是一種“世界通用語言”它能夠準確、清楚、間接地刻畫和描述日常生活中的許多現象。應讓學生養成運用數學語言進行交流的習慣。例如,當學生乘坐出租車時,他應能意識到付費與行駛時間或路程之間具有一定的函數關系。鼓勵學生運用數學建模解決實際問題。首先通過觀察分析、提煉出實際問題的數學模型,然后再把數學模型納入某知識系統去處理,當然這不但要求學生有一定的抽象能力,而且要有相當的觀察、分析、綜合、類比能力。

三、在教學中注意聯系相關學科加以運用

數學建模分析范文第2篇

2對數學建模在培養學生能力方面的認識

數學建模是一種微小的科研活動,它對學生今后的學習和工作無疑會有深遠的影響,同時它對學生的能力也提出了更高的要求[2]。數學建模思想的普及,既能提高學生應用數學的能力,培養學生的創造性思維和合作意識,也能促進高校課程建設和教學改革,激發學生的創造欲和創新精神。數學建模教學著眼于培養大學生具有如下能力:

2.1培養“表達”的能力,即用數學語言表達出通過一定抽象和簡化后的實際問題,以形成數學模型(即數學建模的過程)。然后應用數學的方法進行推演或計算得到結果,并用較通俗的語言表達出結果。

2.2培養對已知的數學方法和思想進行綜合應用的能力,形成各種知識的靈活運用與創造性的“鏈接”。

2.3培養對實際問題的聯想與歸類能力。因為對于不少完全不同的實際問題,在一定的簡化與抽象后,具有相同或相似的數學模型,這正是數學應用廣泛性的表現。

2.4逐漸發展形成洞察力,也就是說一眼抓住(或部分抓住)要點的能力。

3有關數學建模思想融入醫學生高等數學教學的幾個事例3.1在關于導數定義的教學中融入數學建模思想

在講導數的概念時,給出引例:求變速直線運動的瞬時速度[3,4],在求解過程中融入建模思想,與學生一起體會模型的建立過程及解決問題的思想方法。通過師生共同分析討論,有如下模型建立過程:

3.1.1建立時刻t與位移s之間的函數關系:s=s(t)。

3.1.2平均速度近似代替瞬時速度。根據已有知識,僅能解決勻速運動瞬時速度的問題,但可以考慮用某段時間中的平均速度來近似代替這段時間中某時刻的瞬時速度。對于勻速運動,平均速度υ是一常數,且為任意時刻的速度,于是問題轉化為:考慮變速直線運動中瞬時速度和平均速度之間的關系。我們先得到平均速度。當時間由t0變到t0+Δt時,路程由s0=s(t0)變化到s0+Δs=s(t0+Δt),路程的增量為:Δs=s(t0+Δt)-s(t0)。質點M在時間段Δt內,平均速度為:

υ=Δs/Δt=s(t0+Δt)-s(t0)/Δt(1)

當Δt變化時,平均速度也隨之變化。

3.1.3引入極限思想,建立模型。質點M作變速運動,由式(1)可知,當|Δt|較小時,平均速度υ可近似看作質點在時刻t0的“瞬時速度”。顯然,當|Δt|愈小,其近似程度愈好,引入極限的思想來表示|Δt|愈小,即:Δt0。當Δt0時,若趨于確定值(即極限存在),該值就是質點M在時刻t0的瞬時速度υ,于是得出如下數學模型:

υ=limΔt0υ=limΔt0Δs/Δt=limΔt0s(t0+Δt)-s(t0)/Δt

要求解這個模型,對于簡單的函數還比較容易計算,而對于復雜的函數,極限值很難求出。但觀察到,當拋開其實際意義僅從數學結構上看,這個數學模型實際上表示函數的增量與自變量增量比值、在自變量增量趨近于零時的極限值,我們把這種形式的極限定義為函數的導數。有了導數的定義,再結合導數的運算法則和相關的求導法則,前面的這個模型就從求復雜函數的極限轉化為單純求導數的問題,從而很容易求解。

3.2在定積分定義及其應用教學中融入數學建模思想對于理解與掌握定積分定義及其在幾何、物理、醫學和經濟學等方面的應用,關鍵在于對“微元法”的講解。而要掌握這個數學模型,就一定要理解“以不變代變”的思想。以單位時間內流過血管截面的血流量為例,我們來具體看看這個模型的建立與解決實際問題的整個思想與過程。

假設有一段長為l、半徑為R的血管,一端血壓為P1,另一端血壓為P2(P1>P2)。已知血管截面上距離血管中心為γ處的血液流速為

V(r)=P1-P2/4ηl(R2-r2)

式中η為血液粘滯系數,求在單位時間內流過該截面的血流量[3,4](如圖1(a))。

圖1

Fig.1

要解決這個問題,我們采用數學模型:微元法。

因為血液是有粘性的,當血液在血管內流動時,在血管壁處受到摩擦阻力,故血管中心流速比管壁附近流速大。為此,將血管截面分成許多圓環來討論。

建立如圖1(b)坐標系,取血管半徑γ為積分變量,γ∈[0,R]于是有如下建模過程:

①分割:在其上取一個小區間[r,r+dr],則對應一個小圓環。

②以“不變代變”(近似):由于dr很小,環面上各點的流速變化不大,可近似看作不變,所以可用半徑為r處圓周上流速V(r)來近似代替。此圓環的面積也可以近似看作以圓環周長2πr為長,dr為寬的矩形面積2πrdr,則該圓環內的血流量可近似為:ΔQ≈V(r)2πrdr,則血流量微元為:dQ=V(r)2πrdr

③求定積分:單位時間內流過該截面的血流量為定積分:Q=R0V(r)2πrdr。

以上實例,體現了微元法先分割,再近似,然后求和,最后取極限的建模過程,并成功把所求量表示成了定積分的形式,最終可以應用高等數學的知識求出所求量的建模思想。

4結語

高等數學課的中心內容并不是建立數學模型,我們只是通過數學建模強化學生的數學理論知識的應用意識,激發學生學習高等數學的積極性和主動性。所以在授課時應從簡潔、直觀、結合實際入手,達到既有助于理解教學內容,又可以通過對實際問題的抽象、歸納、思考,用所學的數學知識給予解決。所選的模型,最好盡可能結合醫學實際問題,且具一定的趣味性,從而使學生體會到數學來源于生活實際,又應用于生活實際之中,以激發學生學好數學的決心,提高他們應用數學解決實際問題的能力[5]。

總之,高等數學教學的目的是提高學生的數學素質,為進一步學習其專業課打下良好的數學基礎。教學中融入數學建模思想,可使學生的想象力、洞察力和創造力得到培養和提高的同時,也提高學生應用數學思想、知識、方法解決實際問題的能力。

【參考文獻】

[1]洪永成,李曉彬.搞好數學建模教學提高學生素質[J].上海金融學院學報,2004,3:(總63)6.

[2]姜啟源.數學模型[M].北京:高等教育出版社,1993,6.

[3]梅挺,鄧麗洪.高等數學[M].北京:中國水利水電出版社,2007,8.

[4]梅挺,賈其鋒,張明,等.高等數學學習指導[M].北京:中國水利水電出版社,2007,8.

[5]蔡文榮.數學建模與應用型人才培養[J].閩江學院學報(自然科學版),27(2),2006,4.

數學建模分析范文第3篇

更注重數學學習與生活的緊密聯系注重數學知識的生發過程和用數學知識、方法解決實際問題的教學。如用解直角三角形知識求電梯的長,測算國的高,通過研究足球隊員射門來探索圓周角定理及推論,從三角形全等、相似來測算河寬、山高……使學生感受到生活中處處有數學,數學來源于生活,應用于生活,創造生活,激發學生更多地了解生活,理解數學,在“車輪為什么是圓的?”、“水井為什么徹成圓口的?”、“五角星為什么那么美麗?”的問題中學習數學,體驗生活中的數學價值。豐富學生的生活世界,開闊他們的認知領域,更有助于激發他們學習數學的熱情、應用數學的信心和創造數學的潛能。

二、文學語言與圖形語言、表格語言、符號語言的相互轉化

全面理解數學信息,把握問題本質數學信息的展現形式很多:文學語言,圖形語言,表格語言,符號語言等,學生對冗長復雜的文字信息因其繁難而不深入地閱讀理解,心沉不下去,腦想不到位;對一些圖表信息因直觀而粗淺地了解,未弄清其本質內容;對那些簡煉的數學符號信息更是一眼掃過,圖未讀懂,字未看清,浮于表面,走不出解決問題的第一步,久而久之,學生見題生畏,畏而退縮,形成應用題難解的思維障礙。在解決數學問題的過程中要善于培養學生的觀察理解及信息整合能力,各種語言相互轉化,理解把握問題的本質。

1.把枯燥難解的文字語言轉化為直觀簡潔的圖表信息,便于學生理解問題本質。

2.用語言符號清楚再現圖表信息,深入本質認識問題。

3.圖文并茂,數形結合把握數學信息。很多數學問題是需要圖文并茂,直觀與抽象結合,數與形結合呈現問題本質,才能找到解決問題的突破口。

三、緊扣問題類型及數量關系

數學建模分析范文第4篇

[關鍵詞]數學建模;商務數據分析與應用專業;實施路徑

前言

數學模型是連接實際問題與數學問題的橋梁,是對某一實際問題,根據其內在規律,作一些必要的簡化與假設,運用適當數學工具轉化為數學結構,從而用數學語言描述問題、解釋性質、預測未來,提供解決處理的最優決策和控制方案。數學建模是架設橋梁的整個過程,是從實際問題中獲得數學模型,對其求解,得到結論并驗證結論是否正確的全過程。數學建模是用數學語言和方法,借助數學公式、計算機程序等工具對現實事物的客觀規律進行抽象并概化后,在一定假設下建立起近似的數學模型,并對建立的數學模型進行求解,然后再根據求解的結果去解決實際問題。在這個過程中要從問題出發,充分發掘問題內涵,按照問題中蘊含的內生動力,尋求合適的模型,經過實踐檢驗后多次修改模型使之漸趨完善,同時還要進行因素靈敏度分析,找出對問題影響較大、更大或最大的因素。隨著社會的發展,大數據時代的來臨,數學建模越來越引起人們的重視,很多高校將數學建模納入課程體系之中,以提高學生運用專業知識、數學理論與方法及計算機編程技術綜合分析解決問題的能力,特別是數學建模競賽能有效提升學生的計算機技術與運算能力、團隊協作能力、寫作表達和創新實際能力。近年來,隨著互聯網技術的迅速發展,形形的數據環繞著我們,數據分析方面的人才需求陡增,造就了商務數據分析與應用專業的問世。商務數據分析與應用專業雖是2016年才增補的新專業,但它是一個跨數學、電子商務、計算機應用等學科的邊緣專業。培養主要面向互聯網和相關服務、批發、零售、金融等行業,掌握一定的數理統計、電子商務及互聯網金融相關知識,具有商務數據采集、數據處理與分析、數據可視化、數據化運營管理等專業技能,能夠從事商務數據分析、網店運營、網絡營銷等工作的高素質技能型人才。商務數據分析與應用專業的學生畢業后主要從事電商數據化運營過程中的數據采集與整理、調整與優化、網店運營與推廣等工作。從2019年開始1+X證書制度試點工作拉開了序幕,職業教育邁入考證新時代,商務數據分析與應用專業作為第二批試點專業正在如火如荼地進行著,這將拓寬學生就業創業渠道,提高學生就業創業本領。但作為一名優秀的數據分析師要對數據敏感,熟知業務背景,認知數據需求,具有超強的數據分析與展示能力。若將數學建模融入商務數據分析與應用專業的人才培養體系中去,不僅使學生運用數學思維解決問題的能力得到提升,更使學生思路變得富有條理性,讓學生養成敏銳觀察事物的習慣,對學生的未來發展產生深遠的影響。

1將數學建模融入商務數據分析與應用專業的可行性分析

將數學建模融入商務數據分析與應用專業不是牽強附會的關聯,具有一定的可行性。

1.1在課程體系上具有可行性

數學建模是源于實際生活的需求,借助于數學的思維及知識去解決問題,需要學生具備一定的數學基礎和計算機編程相關知識。商務數據分析與應用專業的課程體系中含有統計基礎、數理統計與應用、C++、數據分析與處理等課程為學生學習數學建模奠定了基礎。

1.2在教學團隊上具有可行性

數學建模相關課程需要一支專業基礎扎實、年輕、富有創造力的教學團隊。教學團隊中的教師不僅要有較為寬廣的數學知識,也要具備較強的計算機編程和操作能力,這樣才能培養學生從實際問題中刻畫問題的本質并抽象出數學模型的能力。我校商務數據分析與應用專業的數學建模相關教師共9人,由來自于統計專業、計算機專業、電子商務專業等專業背景的教師組成,完全可以勝任數學建模相關課程的教學與指導。

1.3在教學環境上具有可行性

本專業校內教學條件比較完善,校內實訓室基本上能夠滿足所有專業課程及專業實操課程的教學需要,學生可以在仿真的環境中進行練習。鑒于現有校外實訓基地的實習內容與學生所學專業并不對口或融合度較低的現狀,學校還要積極拓展校外實訓銜接度高的校外實訓基地,讓學生真正參與到企業活動中去,著實提升學生的商務實踐技能。校內教學條件完全可以勝任數學建模相關課程的教學。

2將數學建模融入商務數據分析與應用專業的實施路徑

任何的教學改革都不是一蹴而就的,是時間沉淀出來的產物,從無到有、從有到優需要一個漫長的過程。要將數學建模融入商務數據分析與應用專業,需要從課程體系、教學團隊、管理制度等方面著手。

2.1構建數學建模的課程體系

將數學建模融入商務數據分析與應用專業,首先要制定融合數學建模的人才培養方案,明確數學建模在培養方案中的知識、素質、能力等培養目標和要求,設置數學建模在教學計劃中的相關理論、實踐等教學環節的課時與學分分配。對大一學生增設數學建模課程,將數學建模與統計學、經濟應用數學并行教學,其中涉及數學建模思想、基本數學模型、Matlab軟件入門等內容,使學生了解幾類基礎的數學模型、常規的數學建模步驟及方法。在教學中加入商務數據分析案例,根據問題需求先建立數學模型,然后通過Matlab編程求解出結果,并運用軟件進行計算、仿真和模擬,這樣將數學建模、數學實驗和商務數據分析三者有機銜接起來,不僅可以激發學生的學習興趣,提高學生運用數學建模進行商務數據分析及預測的能力,也為之后的數學建模競賽鋪路。

2.2組建數學建模的教學團隊

數學建模的教師不僅要熟悉初等幾何、微分方程、優化、圖與網絡、概率等機理分析性建模,還要熟悉統計、預測、檢測等測試分析性建模;不僅要掌握差分方程、插值與擬合、回歸分析、線性規劃等數學建模方法,還要熟練掌握Matlab、LINGO等各類建模語言的使用。作為數學建模的教師,面對商務數據方面的實際問題,要全面深入細致地了解問題的背景,準確無誤地明確問題的條件,在查閱、收集、閱讀掌握相關的數據、信息和資料的基礎上,清晰準確地形成問題的主要特征,初步確定模型類型。然后根據特征和目的,找到問題的本質,忽略一些次要因素,給出必要的、合理的簡化與假設。在分析與假設的基礎上,利用數學工具和方法,描述對象內在規律,建立變量間關系,確定數學結構,建立商務數據的問題模型。數學建模的一系列過程需要教學團隊的合理分工與協作,在日常教學過程中既要重視數學理論,又要重視實踐案例教學。使學生了解基本的數學模型和編程思想,把教學重心放在案例的分析、模型的選擇、程序的實現、靈敏度的分析等過程之中。通過對大量問題的數學模型的建立及計算機編程的求解,讓學生觸類旁通地處理一些實際問題,使學生體會到數學的魅力所在及學以致用的道理,從而提高學生商務數據分析與應用能力,為學生今后的創新創業奠定基礎。教學團隊不僅要完成數學建模相關課程的教學,還要加強數學建模教學的研究和應用,加強與外界的交流,推動教學改革,以提高數學建模的水平和質量。

2.3成立數學建模的學生社團

除了數學建模融入商務數據分析與應用專業教學之外,還可以在學校成立數學建模社團,吸納學校中對數學建模感興趣的學生,特別是商務數據與分析專業的學生進入社團。由數學建模老師定期對社團學生進行指導,將數學建模相關的數學公式、數學方法,數學建模的流程,競賽論文的撰寫要領,編程技巧等以講座的形式傳授給學生。同時,社團學生之間成立互助小組,互助小組中選擇商務數據分析與應用專業的學生為組長,由組長帶領其他組員共同探討數學建模的學習方法與技巧,分享數學建模的編程技術與相關資料,交流數學建模的解決問題的思路。這樣由一個專業帶動多個專業,一個社團輻射到整個學校,在提高學生的數學建模能力的同時,也為數學建模競賽選拔人才做好準備。數學建模社團的建立在豐富學生業余生活的同時,也給那些對數學有興趣的學生提供了一個相互交流的平臺,不僅可以開闊學生數學發現和研究的思維,還可以加強數學理論與實際問題之間的聯系,提高學生運用數學思維方式解決實際問題的能力。

2.4參加數學建模的相關競賽

為了更好地發揮數學建模在培養大學生創新創業能力過程中的引領作用,學校組織學生參加數學建模的相關競賽,并將其發揮到極致。大學生數學建模競賽是提高學生數學建模能力最好的平臺,美國在1985年開始創辦數學建模競賽,我國大學生于1989年開始參賽并逐步成為參賽主體,到2019年共有15個國家25370隊注冊參賽,其中中國大陸地區代表隊約占98%。我國第一屆大學生數學建模競賽(CUMCM)于1992年創辦,2019年1490校區42992隊報名參賽,現已呈現出一派繁榮景象,其他數學建模競賽,如:深圳杯、電工杯等也如火如荼地開展起來。想在競賽中取得優異的成績是一個系統的工程。數學建模參賽團隊通常由3名學生組成。在學生選拔時,就要綜合考慮學生的知識、能力、性格等因素,這3名學生不僅要有較好的計算機技術與運算能力,更要有吃苦耐勞的精神和較好的團隊合作意識。在教學指導時,不僅為學生講解一些基礎的數學建模方法和技巧,更要注重綜合分析解決問題、邏輯思維、語言文字理解與表達、科研創新等能力的培養。在模擬訓練時,指導教師嚴格把關,讓學生合理安排三天時間在網上查閱資料,分析問題之后建模與解答,檢驗與分析,再完成競賽的論文的寫作。通過多次有針對性的模擬訓練,學生攝取新知識、新技能的能力得到提升,定量與定性分析的思維能力得到鍛煉,責任意識得到加強,自主學習的習慣逐漸養成,不畏艱難的品質得到磨練,團隊創新能力得到提高。指導教師通過對數學建模的研究和學生的指導,教學相長,自身的建模能力也將得到大幅提升。面對一些實際的商務數據問題,能夠通過建立一些相關的數學模型,探索出解決實際問題的方案,并從這些方案中選擇出最合理、最科學、最恰當的方案。

2.5搭建數學建模的管理體系

將數學建模課程融入商務數據分析與應用專業難度不大,但是要讓學生組隊參加數學建模競賽并出彩,就需要學校領導重視及相關職能部門支持,在校內建立健全數學建模管理制度,如將數學建模競賽作為二級學院考核指標、數學建模指導教師的工作量計算辦法、學生在獎學金與評先評優等方面優先考慮等。只有建立健全校內管理體系,才能激勵更多的教師主動承擔數學建模相關課程的教學,參與數學建模社團的指導,同時激發學生學習數學建模的興趣與參加數學建模競賽的積極性。

數學建模分析范文第5篇

將數學建模思想融入高職數學教學中具有重要的實際意義.高職數學老師將數學建模的思想引入數學教學中,可以用來培養學生的數學建模意識和數學建模能力以及運用數學建模的方法解決現實生活問題的能力.高職教育在人才培養過程中具有工具性和基礎性的作用,因此,在教學的過程中應該堅持適度地融入數學建模思想,培養學生的建模意識,提升建模能力,在指引學生進行實際應用的過程之中,重視對能力的培養,將實際生活中的問題作為載體,對傳統使用的教材進行改革.教師在對公式、原理和概念教學的過程中,應該向學生滲透相關的數學建模思想和數學建模方法,尤其是在對導數、極限和積分等概念進行闡述的時候,應該將新的數學問題向以往解決過的問題進行轉化.

一、數學建模思想的闡述和意義

我們通常所說的“數學建模”就是在解決現實世界中的問題時,運用數學理論及工具構建出一個數學的模型,這個模型的本質是一種數學結構,可以是若干數學式子,還可以是某種圖形表格,能夠用來解釋現實對象的特性和狀態,推測對象事物的未來狀況,提供人們處理事物的決定策略以及控制方案.數學建模的思想就是對數學的應用思想,將其融入高職數學教學中,充分體現了數學的真正價值——從現實出發再應用于現實.

在高職數學教學中融入建模思想,有利于激發學生的數學學習興趣,讓學生在解決問題的同時,發現自己數學知識的欠缺,從而回到課堂尋求數學知識,這樣循環反復不僅促進了數學教學,更提升了學生的實際應用能力和動手能力.數學建模中涉及的問題往往是多種多樣的,解決方法也是新奇個性的,將其思想融入數學教學是對學生的創新能力的鍛煉與激發,使得課堂更加豐富多彩,教學更加熱情積極.

二、建模思想的培養策略

1豐富數學教學內容,突出數學思想

對于高職院校的數學教學要融入數學建模思想,就要對教學的具體內容作出必要的變通,在教學數學的理論時,轉變以往重視推導證明的教學過程,在推導的過程中不必追求過高的完整性和嚴密性,將教學的重點移向基本概念的深入理解,熟練掌握和應用技術、技巧與方法.針對各個專業的特征,設置有側重點的數學課程.如理科方面的電子電氣專業,就可以多重視學生的微分、極限、重積分變換等教學;在經濟方面的專業應強調如數理統計學、線性代數學以及線性規劃學的教學內容,而且在微積分方面最好簡略;計算機類型的專業就可以適當增加像離散數學的教學內容.總體上強調實際應用價值高的教學部分,同時增添教學素材,融入新的技術來開闊學生的觀念.

2培養建模意識,用建模的思想指導課程

高職數學教學的數學建模思想要從灌輸意識開始,和以往教學略有不同的是,要在教導學生學習基本數學知識技巧時,用數學建模的思想指導他們理解概念,認識本源.很多問題都可以用建模去講解,比如最優化、最值問題、導數問題、極限問題、微分方程問題、線性規劃問題等.

這就要求我們高職數學老師要精心設計課程教學方案,充分發揮數學建模的思想,培養學生的建模意識.如老師在講解《函數》一章時,不能按照以前的方法只講解函數是一種關系,而要在其基礎上賦予它更新的內容,以數學建模的思想,將函數公式應用到實際問題中,這樣讓學生能夠有更深的理解,開闊學生的思維.舉例如下:

給出一個函數式子:s=12gt2.

這是一個描述不同變量之間的聯系而建立起來的函數關系,我們在教學中就可以構建具體的數學模型,這就是自由落體在整個運動過程中的下降距離s和時間t之間存在的函數關系,經過這樣的簡單設計之后再講解給學生,會使教學的積極性有很大改善,也會使這種建模思想慢慢植入學生以后的學習之中.

3提升建模能力,將建模的思想融入學生的習題

注重培養學生“數學模型的應用能力”和“數學模型的建立能力”.能力培養重點放在平時學生的數學習題設計上,可以使用“雙向翻譯”的培養方式,這就要在講解習題之前做好準備工作,在課堂上為學生講解清楚概念的來源、公式的實際內涵和可用的幾何模型,舉例說明它們之間可以轉換,從而布置“翻譯”習題,培養建模能力.例如,可以出類似下面的習題:

函數關系式f(x,y)=(x-2)2+y2+x2+(y-1)2,請說明函數所能表示的具體含義,并求其最小值.在做具體解答的時候學生會尋找課堂所學,找出答案.這就是通過翻譯激發其建模能力,對于這個問題就是求算一動點與兩定點之間的距離之和,學生自然在求算最小值時聯系實際尋找到兩定點的中點就是最小的值所在點,從而簡單地解決問題.也可以給出實際問題而不是公式,讓學生去求解,以達到“雙向翻譯”,增強數學建模能力.

4增設數學實驗的教學,將數學軟件納入學習之中

高職數學教學中大部分都是微積分,具有抽象性和復雜性的特征,不容易求算和解決,學生在課堂上學習到的知識和方法的所用之處少之又少.作為高職院校,學生學習數學的目的是應用所學去處理實際問題數學軟件在微積分的學習中可以起到很大的作用.對于一些微積分中的問題,教師可以運用實驗來指導教學,這樣既可以使實踐大為縮減,更能使學生學習理解的程度加深,還能應用數學軟件matlab及mathematica使復雜的求算不再困擾學生,在數學教學上是很大的進步,充分體現數學建模思想的重要作用.

5把數學模型作為教學內容

主站蜘蛛池模板: 夹江县| 石棉县| 仁布县| 永州市| 江永县| 盐津县| 河西区| 卢氏县| 高唐县| 谷城县| 大英县| 栾川县| 南溪县| 蒲江县| 玛沁县| 乡宁县| 潞城市| 高邮市| 登封市| 天峨县| 平塘县| 察隅县| 班戈县| 鹤庆县| 宣汉县| 诸城市| 金秀| 哈密市| 西贡区| 兴海县| 聂荣县| 景德镇市| 宜州市| 开原市| 肃北| 托里县| 奉节县| 禹州市| 隆化县| 丹凤县| 淄博市|